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Abstract Stochastic volatility (SV)modelsmimicmanyof the stylized facts attributed
to time series of asset returns, while maintaining conceptual simplicity. The com-
monly made assumption of conditionally normally distributed or Student-t-distributed
returns, given the volatility, has however been questioned. In this manuscript, we intro-
duce a novel maximum penalized likelihood approach for estimating the conditional
distribution in an SVmodel in a nonparametric way, thus avoiding any potentially crit-
ical assumptions on the shape. The considered framework exploits the strengths both
of the hidden Markov model machinery and of penalized B-splines, and constitutes
a powerful alternative to recently developed Bayesian approaches to semiparametric
SV modelling. We demonstrate the feasibility of the approach in a simulation study
before outlining its potential in applications to three series of returns on stocks and
one series of stock index returns.
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1 Introduction

Stochastic volatility (SV) models are immensely popular tools for the analysis of
financial time series. This subclass of state-space models (SSMs) constitutes one of
the two most widely used approaches for modelling stock market volatility, the other
one being ARCH/GARCH-type models. For log-returns y1, . . . , yT on an asset, the
structure of the standard discrete-time SV model, labeled SV0 in the following, is as
follows:

yt = ε
(0)
t β exp(gt/2), gt = φgt−1 + σηt , (1)

where β, σ > 0, and where {ε(0)
t } and {ηt } are independent sequences of independent

standard normal random variables (e.g., Shephard 1996). Stationarity is obtained for
|φ| < 1. The unobserved sequence {gt }, commonly referred to as the log-volatility
process, represents the time-varying “nervousness” of themarket. This model captures
several of the stylized facts attributed to asset returns, including positive autocorrela-
tion of squared returns (indicating a volatility that slowly varies over time and hence
volatility clustering), zero autocorrelation of the unsquared returns, and a kurtosis in
excess of 3. However, the basic model tends to underestimate the probability of rel-
atively extreme returns, such that it is often more adequate to consider a Student-t
distribution with ν degrees of freedom for ε

(0)
t (Chib et al. 2002); we label this second

model SVt.
In the existing literature, several different model formulations have been considered

that extend the flexibility of the log-volatility process, {gt } (e.g., Gallant et al. 1997;
Abrahamet al. 2006;Langrock et al. 2012).YetDurham(2006) found“noevidence that
even simple single factor models are unable to capture the dynamics of the volatility
process” (p. 276). Instead, Durham considers the shape of the conditional distribution
in SV models—i.e., of the conditional distribution of yt , given gt—to be “the more
critical problem” (p. 304). In addition to heavy tails, which are accounted for in the SVt
formulation, evidence of asymmetries has been found (e.g., Gallant et al. 1997; Harvey
and Siddique 2000; Jondeau and Rockinger 2003; Durham 2006). To get the shape
right, and in particular to accurately estimate the tails of the conditional distribution,
is of high importance for example in risk management. While parametric models
can be constructed that enable the inclusion of heavy tails and skewness (e.g., using
a skewed Student-t distribution, as proposed for example by Nakajima and Omori
2012), nonparametric approaches have the considerable advantage that no restriction
to a particular class of distributions is made a priori.

Some recent work in this direction has been conducted in the Bayesian context,
where the normal distribution can be used as a building block to formulate more com-
plex models that still utilize the benefits of the normal formulation for constructing
convenient update schemes in aMarkov chainMonteCarlo simulation.Abanto-Valle et
al. (2010) consider scalemixtures of normals for the conditional distribution,where the
variance of the normal distribution is supplemented with suitable prior specifications
that yield a larger class of potential marginal distributions after integrating out themix-
ing distribution for the variance. Nonparametric specifications relying on an infinite-
dimensional mixture of normals, generated by a Dirichlet process mixture prior,
have been developed in Jensen and Maheu (2010) and Delatola and Griffin (2011).
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Stochastic volatility modelling using penalized splines 519

While Jensen and Maheu (2010) directly tackle the conditional distribution of the
returns, Delatola and Griffin (2011) employ a different representation where the loga-
rithm of the squared noise in the return process is considered for the analysis. Delatola
and Griffin (2013) extend the latter approach by including a leverage effect, allowing
for the potential correlation of the two error terms, in the return and in the log-volatility
process, respectively.

In this manuscript, we develop a novel frequentist approach for nonparametri-
cally estimating the conditional distribution in an SV model. The proposed maximum
penalized likelihood approach is similar in spirit to that proposed in Langrock et al.
(2014, to appear), and exploits the strengths both of likelihood-based hidden Markov
model (HMM) machinery and of penalized B-splines (i.e., P-splines). The former is
employed to deal with a well-known difficulty with SV models, which is that their
likelihood is given by a high-order multiple integral that is analytically intractable. It
has however been shown that methods available for HMMs—which have the same
dependence structure as SV models and constitute another subclass of SSMs, with
finite state space—can be applied in order to perform a fast and accurate numerical
integration of the SV model likelihood. More specifically, such a numerical integra-
tion corresponds to a fine discretization of the support of the log-volatility process.
The associated transformation of the continuous support of {gt } to a finite support
renders the powerful HMM forward algorithm applicable, making it feasible to eval-
uate an arbitrarily accurate approximation to the SV model likelihood (Fridman and
Harris 1998; Bartolucci and Luca 2001, 2003; Langrock et al. 2012). We extend this
likelihood-based approach to allow for a nonparametric estimation of the conditional
distribution, by representing the density of this distribution as a linear combination of a
large number of standardized B-spline basis functions, including a roughness penalty
in the likelihood in order to arrive at an appropriate balance between goodness of fit
and smoothness for the fitted density. Since we still model the log-volatility process
in a parametric way, we use the label SVsp to refer to the resulting semiparametric SV
model with nonparametrically modelled conditional distribution.

The paper is structured as follows. In Sect. 2, we begin by describing the likeli-
hood evaluation, then introducing the B-spline-based representation of the conditional
distribution and discussing associated inferential issues. The performance of the sug-
gested approach is investigated in a simulation study in Sect. 3. In Sect. 4, we apply
the approach to real data related to three stocks and one stock index, comparing the
predictive performance of our model to popular parametric counterparts.

2 Semiparametric SV modelling

2.1 SV model likelihood

We consider a model SVsp of the form

yt = εt exp(gt/2), gt = φgt−1 + σηt , (2)

with the ηt iid standard normal, but where, in contrast to the models SV0 and SVt, we
do not make any assumptions on the distributional form of the random variables εt .
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However, we do assume these variables to be iid, and to be independent of {ηt }. Our
aim is to nonparametrically estimate the probability density function (pdf) fε of the
variables εt . Compared to the SV0 model, given in (1),we have omitted the parameterβ
in (2), since otherwise the semiparametric model would not be identifiable; in the SVsp
model, the effect of β will be absorbed within fε. Before we introduce our strategy for
estimating fε in a nonparametric way (alongside the other model parameters), we will
derive a tractable likelihood function for general fε, including the nonparametric case,
but for example also those of a normal distribution and of a Student-t distribution. In
the following, we will use f as a general symbol for a density function. To formulate
the likelihood, we will require the conditional pdfs of the random variables yt , given
gt (t = 1, . . . , T ). We denote these conditional pdfs by f (yt |gt ), for t = 1, . . . , T .
These pdfs are simple transformations of the density fε:

f (yt |gt ) = exp(−gt/2) fε(yt exp(−gt/2)).

For any fε, the likelihood of the model defined by (2) can then be derived as

L =
∫

· · ·
∫

f (y1, . . . , yT , g1, . . . , gT ) dgT . . . dg1

=
∫

· · ·
∫

f (y1, . . . , yT |g1, . . . , gT ) f (g1, . . . , gT ) dgT . . . dg1

=
∫

· · ·
∫

f (g1) f (y1|g1)
T∏
t=2

f (gt |gt−1) f (yt |gt ) dgT . . . dg1

=
∫

· · ·
∫

f (g1) exp(−g1/2) fε(y1 exp(−g1/2))

×
T∏
t=2

f (gt |gt−1) exp(−gt/2) fε(yt exp(−gt/2)) dgT . . . dg1 . (3)

In the second last step, we exploited the dependence structure that is characteristic of
SV models, HMMs and general SSMs. Hence, the likelihood is a high-order multiple
integral that cannot be evaluated directly. Via numerical integration, using a simple
rectangular rule based onm equidistant intervals, Bi = (bi−1, bi ), i = 1, . . . ,m, with
midpoints b∗

i and of length b, the likelihood can be approximated as follows:

L ≈ bT
m∑

i1=1

. . .

m∑
iT =1

f (b∗
i1) exp(−b∗

i1/2) fε(y1 exp(−b∗
i1/2))

×
T∏
t=2

f (b∗
it |b∗

it−1
) exp(−b∗

it /2) fε(yt exp(−b∗
it /2)) = Lapprox. (4)

This approximation can be made arbitrarily accurate by increasing m, and in fact
virtually exact form around 100, provided that the interval (b0, bm) covers the essential
range of the log-volatility process (for more details, see Sect. 2.3.1). We note that, in
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principle, other quadrature rules could be implemented (see, e.g., Fridman and Harris
1998), which could improve the efficiency of the approximation. However, the simple
midpoint quadrature is very easy to implement, and at the same time is extremely
accurate for values of m which will still guarantee computational tractability when
HMMmachinery is applied. Thus, throughout this work, we will be limiting ourselves
to the consideration of this simple yet functional numerical integration procedure.

In the given form, the approximate likelihood (4) is computationally intractable
already for small T , since its evaluation requires O(TmT ) operations. However, a
much more efficient recursive scheme can be used to evaluate the approximate like-
lihood. To see this, note that the numerical integration essentially corresponds to a
discretization of the state space, i.e., of the support of the log-volatility process {gt }.
Therefore, the approximate likelihood given in (4) can be evaluated using the well-
developed and powerful machinery of the subclass of SSMs given by HMMs, which
are SSMswith a finite state space (cf. Langrock 2011; Langrock et al. 2012).We sketch
the relevant HMM methodology in the “Appendix” to this manuscript. In particular,
in the “Appendix” we highlight a key property of HMMs, which is that the likeli-
hood can be evaluated efficiently using the so-called forward algorithm (Zucchini and
MacDonald 2009). Rather than separately considering all possible underlying state
(and hence log-volatility) sequences, as in (4), the forward algorithm exploits the con-
ditional independence assumptions to perform the likelihood calculation recursively,
traversing along the time series and updating the likelihood and state probabilities at
every step. For an HMM, applying the forward algorithm results in a matrix product
expression for the likelihood, and this is exactly what we obtain also in the present
context:

Lapprox = δP(y1)�P(y2)�P(y3) . . . �P(yT−1)�P(yT )1. (5)

Here, the m × m-matrix � = (
ωi j

)
is the analogue to the transition probability

matrix in case of an HMM (see the “Appendix”), defined as ωi j = f (b∗
j |b∗

i ) · b.
Furthermore, the vector δ is the analogue to the Markov chain initial distribution
in case of an HMM, here defined such that δi , i = 1, . . . ,m, is the density of the
normal distributionwithmean zero and standard deviationσ/

√
1 − φ2—the stationary

distribution of the autoregressive process used to model the log-volatility—evaluated
at b∗

i and multiplied by b. Finally, P(yt ) is anm×m diagonal matrix with i th diagonal
entry exp(−b∗

i /2) fε(yt exp(−b∗
i /2)), hence the analogue to thematrix comprising the

state-dependent probabilities in case of an HMM.Using the matrix product expression
given in (5), the approximate likelihood can be evaluated in O(Tm2) operations. In
practice, this means that the likelihood of an SV model can typically be calculated in
a fraction of a second, even for T in the thousands and say m = 100, a value which
renders the approximation virtually exact. Furthermore, Lapprox → L as bm,m → ∞
and b0 → −∞.

2.2 Nonparametric modelling

We now turn to the nonparametric modelling of the distribution of εt . Following
Schellhase and Kauermann (2012), we suggest to estimate the pdf of εt by considering
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finite linear combinations of a large number of basis functions:

f̂ε(x) =
K∑

k=−K

akψk(x). (6)

Here the basis functions ψ−K , . . . , ψK are known and fixed pdfs. Clearly, f̂ε(x) is a
pdf if

∑K
k=−K ak = 1 anda j ≥ 0 for all j = −K , . . . , K . To enforce these constraints,

the coefficients to be estimated, a−K , . . . , aK , are transformed using the multinomial
logit link function

ak = exp(βk)∑K
j=−K exp(β j )

, (7)

where we set β0 = 0 for identifiability. In principle, any set of densitiesψ−K , . . . , ψK

can be used to approximate fε(x) as in (6). We follow Schellhase and Kauermann
(2012) and use B-splines, in ascending order in the basis used in (6), and standardized
such that they integrate to 1. For more details on B-splines, see for example Boor
(1978) and Eilers and Marx (1996). Since each B-spline basis function is associated
with a separate coefficient, this model formulation in fact leads to a finite-dimensional
parameter space. However, the coefficients themselves are not of interest, and we can
use arbitrarily many of them in order to allow for virtually any desired shaped of the
conditional distribution.We therefore refer to our estimation approach as nonparamet-
ric despite the fact that it does rely on a parametric specification with a large number of
parameters. This is in line with the standard terminology used in the literature, where
(penalized) spline approaches are subsumed under nonparametric approaches (see for
example Ruppert et al. 2003).

The approximate likelihood of the resulting SVsp model is given by (5), plugging in
f̂ε for fε in the matrices P(yt ), t = 1, . . . , T . Following Eilers and Marx (1996), we
modify the (approximate) log-likelihood by including a penalty on (q-th order) differ-
ences between coefficients associated with adjacent B-splines, yielding the penalized
log-likelihood

l p = log
(Lapprox

) − λ

2

K∑
k=−K+q

(
�qak

)2
, (8)

with ak parameterized as in (7) and smoothing parameter λ ≥ 0. The penalty term
involves the difference operator�, where�ak = ak −ak−1 and�qak = �(�q−1ak).
This results in a penalization of roughness of the estimator, with λ controlling how
much emphasis is put on goodness of fit and on smoothness, respectively. In particular,
unpenalized estimates are obtained for λ = 0. For λ → ∞ the penalty will dominate
the likelihood, resulting in a sequence of weights ak that follow a polynomial of order
q − 1 in k. The difference order therefore also affects the smoothness of the estimates
indirectly (and to a much smaller extent than the degree of the spline basis). We will
use q = 2 in the remainder since this provides an approximation to the integrated
squared second derivative penalty that is popular in the context of smoothing splines.
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Including the penalty term in the likelihood avoids the problem of selecting an
optimal number of basis elements, since the penalty effectively reduces the number
of free basis parameters and yields an adaptive fit to the data, provided the smoothing
parameter is chosen in a data-driven way. The number of basis elements needs to be
large enough to give sufficient flexibility for reflecting the structure of the conditional
distribution fε, but once this threshold is passed, increasing the number of basis ele-
ments further does no longer change the fit to the data much due to the impact of the
penalty. For moderately smooth regression functions, Ruppert (2002) recommends to
use a default of about 35 (or 40) basis functions. To capture the pdf of εt in an SV
model, we expect such a choice to easily provide sufficient flexibility, and hence have
chosen K accordingly in our analyses (see below). To select the smoothing parameter
in a data-driven way, we will consider cross-validation (see Sect. 2.3.2).

In preliminary simulation experiments, we found that with an equidistant spacing of
the knots our approach tended to produce estimated densities that were overly smooth
around the peak of the true distribution and too wiggly in the tails. This is related to the
fact that the basis coefficients systematically decay towards the tails of the estimated
distribution, which would require an adaptive amount of smoothing instead of a global
smoothing parameter. As a simple yet effective strategy to achieve such adaptiveness,
we consider increasingly wider distances between the B-spline basis densities towards
the tails instead of the common equidistant specification. Since we still rely on the
unweighted difference penalty in (8), this effectively increases the penalty for the tails
of the distribution.

2.3 Inference

2.3.1 Parameter estimation

The use of the forward algorithm allows for a very fast evaluation of the penalized log-
likelihood given in (8). A numerical maximization of the penalized log-likelihood is
therefore feasible in typical cases, even for highm andhence very close approximations
to the likelihood in (3); some computing times are given in Sect. 4. Since the first part
of expression (8) is susceptible to numerical overflow, it is required to compute its
logarithm,which involves aminor difficulty sincewe are dealingwith amatrix product.
However, techniques to address this issue are standard: Zucchini and MacDonald
(2009) describe a straightforward scaling strategy for calculating the logarithm of an
HMM-type matrix product likelihood (see their Chapter 3).

In practice, one also has to select the value of m, the number of intervals used
in the discretization of the log-volatility process, and the range of possible gt -values
considered in the numerical integration. In our experience, estimates usually stabilize
for values of m around 50 (cf. Langrock et al. 2012; Langrock and King 2013). The
minimum and maximum values for gt have to be chosen sufficiently large to cover the
essential domain of the log-volatility process, but not too large, in order to maintain
sufficient fineness of the grid. More guidance on this issue is provided in Langrock
et al. (2012). Another technical issue in the numerical maximization is that of local
maxima: it may sometimes happen that the numerical search fails to find the MLE,
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and returns a local maximum instead. The best way to address this issue seems to be
to use a number of different sets of initial values in order to find and verify the global
maximum. Uncertainty quantification, for both the parameters of the underlying log-
volatility process and the density of εt , can be conducted using a parametric bootstrap.

2.3.2 Choice of the smoothing parameter

Cross-validation techniques can be used to choose the smoothing parameter. We pro-
ceed along the lines of Racine (2000) and use a k-fold h-block cross-validation
approach, noting that this is only one of several cross-validation techniques avail-
able for time series (see, e.g., Arlot and Celisse 2010; Bergmeier and Benítez 2012).
More specifically, we first partition any given series of log-returns into k subsets con-
taining consecutive observations, denoted by I1, . . . , Ik (e.g., I1 = {1, 2, . . . , 200},
I2 = {201, 202, . . . , 400}, etc.). For i = 1, . . . , k, the model is then calibrated by esti-
mating the parameters using all available data except those from Ii . We here maintain
the existing time series structure, by fitting the model to the time series y∗

1 , . . . , y
∗
T ,

where y∗
t = yt if the observation made at time t is in the calibration sample, and

where y∗
t is treated as a missing data point if the corresponding observation is in Ii .

(Dealing with missing data is straightforward using the HMM machinery—see the
“Appendix”.) The calibrated model is then assessed on a validation sample, namely
Ii but excluding the first h and the last h observations within Ii ; this procedure is to
ensure near-independence of the calibration and validation samples (Racine 2000).
Proper scoring rules (Gneiting and Raftery 2007) are used to assess the calibrated
model for the given λ. For computational convenience, we consider the log-likelihood
of the validation sample, under the model fitted in the calibration stage, as the score of
interest. Alternatively, we could consider the log-likelihood of the validation sample
conditional on the observations from the calibration sample—which seems sensible
if the focus lies on predictive capacity, as opposed to goodness of fit—but with the
given cross-validation scheme, which ensures near-independence of calibration and
validation samples, it is anticipated that this would in any case not make much differ-
ence in practice. From some pre-specified set of possible smoothing parameters, e.g.,
{2n|n = r, r + 1, . . . , s}, where r and s are integers, we select the λ with the highest
mean score over all k cross-validation samples.

2.3.3 Model checking

We have already seen that the use of the HMM forward algorithm provides an efficient
and convenient way to evaluate the SVmodel likelihood. Moreover, HMM techniques
can also be used in order to check the goodness of fit of a given model. Following
Zucchini and MacDonald (2009), we consider one-step-ahead forecast pseudo-
residuals for model checking. Pseudo-residuals have the same purpose as residuals
in regression analyses, but can be applied much more generally (e.g., in time series
analyses). The idea behind pseudo-residuals is to compare any given observation to
the distribution of that observation under the fitted model. In our context, the forecast
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pseudo-residuals are given by

rt = −1(F(yt | yt−1, yt−2, . . . , y1)
)
.

Here  denotes the cumulative distribution function of the standard normal distribu-
tion, and F(yt | yt−1, yt−2, . . . , y1) is the cumulative distribution function of yt given
all observations up to time t − 1. Using the HMM-type approximation, this can be
written as

F(yt | yt−1, yt−2, . . . , y1) ≈
m∑
i=1

ζi F(yt | gt = b∗
i )

=
m∑
i=1

ζi

∫ yt

−∞
exp(−b∗

i /2) fε
(
x exp(−b∗

i /2)
)
dx ,

(9)

where ζi is the i th entry of the vector α̃t−1�/(α̃t−11′), which is defined as

α̃t−1 = δP(y1)�P(y2)� . . . �P(yt−1),

t = 2, . . . , T , with δ, P(yk) and � defined as above. These α̃t ’s constitute the SV
model analogue to the HMM forward probabilities; see the “Appendix” for more
details on the latter. The representation given in (9) is only approximate due to the
discretization of the log-volatility process, but as for the likelihood the accuracy also of
this approximation can be made arbitrarily accurate by increasingm. In the context of
SVmodels, such residuals were first used by Kim et al. (1998). It follows immediately
from a result of Rosenblatt (1952) that, if the fitted model is correct, then the pseudo-
residuals follow a standard normal distribution (see also Zucchini and MacDonald
2009). Thus, forecast pseudo-residuals can be used to identify extreme values, and
the general suitability of the model can be checked by using, for example, quantile–
quantile plots or formal tests for normality.

2.3.4 Decoding

Again building on existingHMMmachinery, estimates of the underlying log-volatility
can easily be obtained using the Viterbi algorithm, which is an efficient dynamic
programming algorithm for computing the most likely Markov chain state sequence
to have given rise to observations stemming from an HMM. Furthermore, the formula
for computing state probabilities of an HMM—Eq. (5.6) in Zucchini and MacDonald
2009—can be used to quantify the uncertainty in the log-volatility estimates.

3 Simulation experiments

To generate artificial data which adhere to many of the stylized facts discussed above,
we use an SV model as in (2), with φ = 0.98, σ = 0.1 and εt specified as εt =
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0.02(ζ1,t −1)αt (ζ2,t +1)1−αt +0.006, where ζ1,t and ζ2,t are mutually independent iid
sequences of Student-t randomvariables with 6 and 8 degrees of freedom, respectively,
and αt are iid Bernoulli variables, each taking on the value 1 with probability 0.35.
This specification results in a skewed and leptokurtic distribution (skewness≈ −0.22;
kurtosis ≈ 3.58) with zero mean. For an illustration of the shape of this distribution,
see Fig. 1.

For this model, we conducted 200 simulation runs, with T = 4,000 observations
being generated in each run. In each run, the final 1,000 observations of the generated
series were used only to assess the predictive capacity of various models, which were
previously fitted to the first 3,000 observations. To make a fairly extensive simulation
study feasible, we did not conduct a cross-validation for the smoothing parameter λ

within each simulation run. Instead, we ran cross-validations only in 10 preliminary
simulation runs, trying the values 256, 512, 1,024, 2,048, 4,096 and 8,192, and then
fixed λ for the main 200 simulation runs at the value which was selected most often by
cross-validation in the preliminary runs (namely λ = 1,024). This procedure resulted
in a good performance (see below), but in fact the results could potentially be further
improved by conducting a cross-validationwithin each simulation run.We set K = 15,
resulting in 31 B-spline basis densities that were used in the estimation. To obtain a
benchmark for the semiparametric model SVsp, we further fitted the basic models SV0
and SVt to each generated series, also using the HMM-based discretization approach
described in Sect. 2.1.

For the SVsp model, the sample mean estimates of the parameters φ and σ were
obtained as 0.978 (sample standard error: 0.007) and 0.103 (0.017), respectively.
For the SV0/SVt models, the sample mean estimates of the parameters φ and σ

were obtained as 0.972/0.977 (sample standard errors: 0.010/0.007) and 0.117/0.102

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15

x

f ε
(x

)

Fig. 1 True density of εt considered in the simulation experiments (dashed grey line) and its 200 estimates
obtained using the nonparametric approach (grey lines)
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(0.023/0.017), respectively. The SV0 model underestimated the persistence parameter
and overestimated the variance of the log-volatility process. The latter is due to the
model’s inability to capture the slight excess kurtosis of the true conditional distri-
bution (see further comments on this issue in Sect. 4.2). In contrast, both the SVsp
model and the SVt model yielded approximately unbiased estimates of the parameters
related to the log-volatility process. Concerning the conditional process, yt , Fig. 1
displays the true pdf of εt and the corresponding pdfs that were estimated using the
nonparametric approach. From the graphic we can see that all 200 fits seem fairly
reasonable.

In the given simulation scenario, we also assessed the predictive capacity of the
three different modelling approaches, represented by the models SV0,SVt and SVsp.
We did this by calculating, in each simulation run and under each of the three types
of models fitted to the first 3,000 observations, the log-likelihood score for the final
1,000 observations, denoted by llki (SV0), llki (SVt) and llki (SVsp), with i indicating
the simulation run. These scores were compared to the corresponding score obtained
when using the true model, i.e., the one that was actually used to generate the artificial
data; we denote this score by llki (SVtrue). The average differences between the scores
obtained for a given fitted model SV∗ (either SV0, SVt or SVsp) and the score obtained
for the true model, i.e.,

�SV∗,SVtrue = 1

200

200∑
i=1

(
llki (SV∗) − llki (SVtrue)

)
,

are provided in Table 1. On average, the SVsp model fitted the out-of-sample data
substantially better than its parametric counterparts. Considering the individual simu-
lation runs, the SVsp model had a better predictive performance than the two parametric
models in 176 out of 200 cases. These results are hardly surprising given the skewness
of the distribution chosen for εt . Nevertheless, they do demonstrate both the practical
feasibility and the potential benefits of our approach.

In order to have a benchmark for these results, we considered a second simulation
scenario in which we generated data from the SVt model, specifying ε

(0)
t in (1) to be

a Student-t distribution with 10 degrees of freedom and μ = 0.02. Except of the true
conditional distribution, this second simulation experiment was configured exactly as
the first. The averaged differences between the scores obtained for the three different
models fitted, SV0, SVt and SVsp, and the score obtained for the true model are also
provided in Table 1. In this scenario, the (correct) SVt model had a better predictive
performance than the two other models in 152 out of 200 cases, while the SVsp model
still showed a better predictive performance than the (incorrect) SV0 model in 164

Table 1 Average differences between the out-of-sample predictive scores obtained for the three different
models fitted, SV0, SVt and SVsp, and the score obtained for the true model, for both simulation scenarios
considered

�SV0,SVtrue �SVt,SVtrue �SVsp,SVtrue

Scenario with skewed and leptokurtic distribution −9.48 −9.14 −3.52

Scenario with Student-t distribution −5.44 −0.62 −2.30
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cases. Thus, overall, the results demonstrate i) the potential of the nonparametric
approach to considerably improve the predictive capacity in scenarios where the true
conditional distribution deviates from the form imposed by either the normal or the
Student-t distribution (e.g., if it is skewed), and ii) that it can perform almost as well
as parametric modelling approaches in scenarios where those are adequate.

4 Application to real data

4.1 The data

The SVsp model was fitted to series of daily log-returns for three stocks, namely Sony
Corporation, Merck & Co. and Microsoft Corporation, and for the stock index S&P
500. The adjusted closing prices, pt , for the period 03.01.2000–01.08.2013, were
downloaded from “finance.yahoo.com”, and the daily log-returns were computed as
yt = log(pt/pt−1). To assess the out-of-sample predictive performance of various
models, we divided each of the four series into two parts:

• In-sample period: 03.01.2000–31.12.2007,
• Out-of-sample period: 02.01.2008–01.08.2013.

The dividing date was chosen to lie before the outburst of the recent financial crisis,
which culminated in the collapse of Lehman Brothers Holdings Inc. in September
2008. The four time series that were analyzed are displayed in Fig. 2.
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Fig. 2 Time series of log-returns on shares of three companies (Sony, Merck and Microsoft) and on the
stock index S&P 500; the observations from the in-sample and out-of-sample periods are displayed in black
and grey, respectively
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4.2 Results

To each of the four series, the SVsp model was fitted using K = 20 and hence 41
B-spline basis densities to represent the density of εt , m = 100 intervals in the dis-
cretization of the log-volatility process, numerically integrating over the log-volatility
values from the interval [b0, b100] = [−5, 5]. Smoothing parameters were selected via
cross-validation as described in Sect. 2.3.2, where we took k = 10 as the number of
cross-validation partitions and h = 50 as the number of observations to be excluded
from each validation block at both the start and the end. Fitting the SVsp model took
about 10min per series on an i7 CPU, at 2.7 GHz and with 4 GB RAM.

For comparison purposes, we also considered the two basic models SV0 and SVt,
and additionally a nonstandard parametric SV model with conditional distribution
the skew Student-t discussed in Fernandez and Steel (1998); the latter model will be
labeled SVskew−t , and we denote the associated skewness parameter by γ .

Eachmodel consideredwas fitted to the four series using the partition into in-sample
period and out-of-sample period given in Sect. 4.1. Models were fitted using the data
from the in-sample period only, and the data from the out-of-sample period were used
to assess the predictive performance of the four different models (as detailed below).

The estimates of the parameters φ, σ , β (only for the parametric models), ν (only
for the SVt model and the SVskew−t model) and γ (only for the SVskew−t model), and
the associated 95% confidence intervals, for each of the four series considered, are
given in Table 2. For each model considered, the confidence interval of each model

Table 2 Parameter estimates and 95% bootstrap confidence intervals obtained for the four different models
fitted to the four series of log-returns considered

Sony Merck Microsoft S&P 500

SV0
φ̂ 0.957 (0.931;0.976) 0.825 (0.752;0.878) 0.979 (0.964;0.989) 0.991 (0.979;0.997)

σ̂ 0.249 (0.196;0.308) 0.545 (0.441;0.660) 0.239 (0.195;0.281) 0.114 (0.085;0.144)

β̂ 0.019 (0.016;0.021) 0.014 (0.013;0.015) 0.015 (0.012;0.020) 0.010 (0.007;0.013)

SVt
φ̂ 0.992 (0.979;0.999) 0.992 (0.976;1.000) 0.994 (0.984;1.000) 0.992 (0.983;0.999)

σ̂ 0.092 (0.060;0.132) 0.086 (0.050;0.126) 0.116 (0.085;0.151) 0.104 (0.073;0.135)

β̂ 0.017 (0.013;0.022) 0.012 (0.010;0.015) 0.014 (0.009;0.020) 0.009 (0.007;0.012)

ν̂ 6.70 (5.21;9.81) 4.67 (3.89;6.16) 6.31 (4.81;8.62) 25.72 (12.82;∞)

SVskew−t
φ̂ 0.993 (0.979;0.999) 0.992 (0.976;0.999) 0.994 (0.983;1.000) 0.992 (0.980;0.999)

σ̂ 0.092 (0.060;0.131) 0.086 (0.052;0.128) 0.116 (0.084;0.151) 0.104 (0.075;0.135)

β̂ 0.017 (0.013;0.022) 0.012 (0.010;0.015) 0.014 (0.009;0.021) 0.009 (0.007;0.012)

ν̂ 6.69 (5.26;10.08) 4.66 (3.92;5.97) 6.33 (5.08;8.93) 25.89 (13.44;∞)

γ̂ 0.997 (0.970;1.025) 1.014 (0.984;1.043) 1.008 (0.977;1.041) 1.010 (0.983;1.037)

SVsp
φ̂ 0.994 (0.984;0.999) 0.993 (0.982;0.999) 0.994 (0.985;0.999) 0.998 (0.993;1.000)

σ̂ 0.087 (0.060;0.119) 0.078 (0.052;0.111) 0.122 (0.089;0.161) 0.084 (0.062;0.111)
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parameter was taken as the empirical quantiles of 500 bootstrap replicates obtained
from refitting the model to time series that were artificially generated from the fitted
model (i.e., a parametric bootstrap).

The results obtained for the SV0 model illustrate the problems of the conditional
normal distribution to capture the extreme returns. Especially for the Merck stock,
where on September 30, 2004, the withdrawal of the drug Rofecoxib from the market
caused heavy losses, SV0 performs badly. Indeed, the only way for the SV0 model to
cope with the associated extreme negative return of −0.31, which occurs in a period
of calm market, is to assign a very high uncertainty to the log-volatility process (as
expressed by a high σ̂ and a small φ̂). This results in an undersmoothing of the volatility.
By contrast, the SVt and SVskew−t models’ leptokurtic conditional distribution leads
to much more plausible estimates for φ and σ , with the results being similar to those
obtained for the SVsp model. In these three models, extreme returns are assigned to
the tail of the return distribution, rather than to big jumps in the log-volatility process,
as in the SV0 model. The same pattern is found for the other two stock return series—
although to a lesser extent.Only for the stock indexS&P500, the estimate ofσ obtained
using the SV0 model is of the samemagnitude as the corresponding estimates obtained
when applying SVt, SVskew−t and SVsp. This is not surprising since in the index the
extreme returns of individual companies play a smaller role, which is also reflected
by the much lighter tail of the conditional distribution in the fitted SVt and SVskew−t
models.

Figure 3 displays the nonparametrically estimated densities of the conditional dis-
tribution in the SVsp model and the associated pointwise 95% confidence intervals,
for the four series considered. Using 500 parametric bootstrap replicates, the point-
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Fig. 3 Conditional densities of εt estimated using the nonparametric approach (solid black lines) and the
associated bootstrap pointwise 95% confidence intervals (dashed black lines), for the four series of log-
returns considered, and underlying weighted B-splines that generate these densities via a linear combination
(in grey)
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Fig. 4 Assessment of the absolute fit of the models in terms of their predictive performance: quantile–
quantile plots of the out-of-sample forecast pseudo-residuals obtained from the fitted models SV0 (top row),
SVt (second row), SVskew−t (third row) and SVsp (bottom row), for Sony (first column), Merck (second
column), Microsoft (third column) and S&P 500 (fourth column). Sample quantiles are given on the vertical
axes, and quantiles of the standard normal are given on the horizontal axes

wise confidence intervals for the densities of the state-dependent distributions were
obtained as the quantiles of the bootstrap density estimates at a specific point in the
support. The skewness of the nonparametrically estimated distribution fε is −0.73,
−2.61, −0.20 and 0.54, for Sony, Merck, Microsoft and S&P 500, respectively. With
the exception of S&P 500, this is in line with the stylized facts attributed to financial
return series which propagate a gain/loss asymmetry as large drawdowns generally
exceed large upward movements (Cont 2001), resulting in a left tail in the conditional
distribution that is more extreme than the right tail (Durham 2006). However, to some
extent the skewness also stems from an asymmetric density close to the center, a phe-
nomenon that could be related to the lack of a leverage effect in our model. Indeed,
Delatola and Griffin (2013) gave evidence that if data stem from an SV model with a
strong leverage effect, then a nonparametric SV model not including this effect may
infer a multimodal conditional distribution.

Quantile–quantile plots of the out-of-sample one-step-ahead forecast pseudo-
residuals associatedwith the returns observed in the out-of-sample period 02.01.2008–
01.08.2013, under the models fitted to the data from the in-sample period, are given
in Fig. 4. The p values for the Jarque–Bera, Anderson–Darling and Kolmogorov–
Smirnov tests applied to the pseudo-residuals are listed in Table 3. The results show
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Table 3 Assessment of the absolute fit of the models in terms of their predictive performance: p values
of Jarque–Bera, Anderson–Darling and Kolmogorov–Smirnov tests for normality applied to out-of-sample
one-step-ahead ahead forecast pseudo-residuals

Sony Merck Microsoft S&P 500

Jarque–Bera
SV0 0.048∗∗ 0.002∗∗ <0.001∗∗ <0.001∗∗
SVt 0.896 0.055∗ 0.795 <0.001∗∗
SVskew−t 0.886 0.045∗∗ 0.780 <0.001∗∗
SVsp 0.818 0.333 0.411 <0.001∗∗

Anderson–Darling
SV0 0.439 0.083∗ 0.015∗∗ <0.001∗∗
SVt 0.450 0.008∗∗ 0.955 <0.001∗∗
SVskew−t 0.438 0.007∗∗ 0.970 <0.001∗∗
SVsp 0.694 0.233 0.206 <0.001∗∗

Kolmogorov–Smirnov
SV0 0.269 0.130 0.062∗ <0.001∗∗
SVt 0.190 0.023∗∗ 0.523 <0.001∗∗
SVskew−t 0.192 0.015∗∗ 0.593 <0.001∗∗
SVsp 0.747 0.365 0.066∗ <0.001∗∗

* normality rejected at 10% level of significance;
** normality rejected at 5% level of significance

that the SV0 model provides poor out-of-sample forecasts for all three stock price time
series, as the corresponding pseudo-residuals show large deviations from normality.
The SVt and SVskew−t models are able to adequately forecast the Sony and Microsoft
stocks, but exhibit some problems in the forecasts for the Merck series. Overall, the
SVsp shows a slightly higher accuracy in the forecasts of the stock returns, especially
with respect to the extreme negative returns. For the S&P 500 index, all four models
perform badly, with each of the normality tests rejecting the null hypothesis of nor-
mally distributed pseudo-residuals for each of the considered models. While for the
models SV0, SVt and SVskew−t at least part of the reason for the poor performance is
the inaccurate forecast of extreme negative returns, for the SVsp model the reason for
the poor performance lies solely in the inaccurate forecast of moderate losses, while
more extreme losses are again captured well. We believe the reason for the bad perfor-
mance in this particular case to lie in the long persistent decline of stock prices during
the financial and economic crisis which ensued the collapse of Lehman Brothers.

As in the simulation study, we also calculated the log-likelihood scores for the
observations from the out-of-sample period, for the four different models and each
of the four series analyzed. The results of this comparative assessment of the out-of-
sample predictive performance of the models are displayed in Table 4. For the stock
returns, the log-likelihood scores portray a similar picture as above, with the SV0
model performing worse than the three models SVt, SVskew−t and SVsp, which again
perform similarly well. For the index S&P 500, the performance of the SVsp model is
relatively poor, and the simple model SV0 performs about as well as the more flexible
models, since the index exhibits less extreme dynamics due to the averaging over
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Table 4 Assessment of the relative fit of themodels in terms of their predictive performance: log-likelihood
scores for the out-of-sample period

Sony Merck Microsoft S&P 500

llk(SV0) 3,265.31 3,891.75 3,778.64 4,228.95

llk(SVt) 3,269.58 3,913.12 3,799.58 4,230.53

llk(SVskew−t) 3,269.67 3,913.74 3,799.98 4,231.09

llk(SVsp) 3,271.38 3,914.65 3,799.08 4,226.11

For each company, the highest score is underlined

several stocks. However, the quantile–quantile plots indicate that even for S&P 500
our semiparametric model has a slightly improved forecast accuracy at the extreme
end of the lower tail.

5 Discussion

The stylized facts of asset returns indicate that simple parametric distributions, such as
the normal or the Student’s t-distribution, may not be well-suited to describe the shape
of the conditional distribution in SV models. Thus, a nonparametric modelling of the
conditional distribution, which allows for heavy tails, gain/loss asymmetry and other
unusual features, may bear considerable advantages. In this manuscript, we devel-
oped a powerful and flexible frequentist framework for a nonparametric estimation
of the conditional distribution in a discrete-time SV model. The approach exploits
the strengths of the HMM machinery, in particular allowing for model checking,
forecasting and volatility estimation. Compared to alternative Bayesian estimation
approaches (Jensen and Maheu 2010; Delatola and Griffin 2011, 2013), an advantage
of our approach is its conceptual simplicity and the associated easy-to-implement
estimation algorithm. In particular, with the HMM approach it is straightforward to
modify the estimation code to allow for a variety of different model formulations, for
example with log-volatility processes more complicated than an AR(1) (Langrock et
al. 2012). Furthermore, model selection can easily be carried out based on information
criteria, whereas in a Bayesian framework model selection can be more difficult.

The computational burden for estimating a model of the proposed type is low,
namely in the order of a couple of minutes for the considered series and fixed smooth-
ing parameter. Applying cross-validation techniques to choose a data-driven smooth-
ing parameter is, however, computationally demanding: computing times for this part
of the analysis were about 2–3h per series we analyzed. These computing times could
be substantially reduced by employing parallel computing. Although the model spec-
ifications are not directly comparable, Delatola and Griffin (2011) report computing
times of up to a day for the model fitting with their Bayesian approach, for series
that were slightly longer than the ones we considered and when fixing the concentra-
tion parameter for the Dirichlet process mixture (which represents an analogue to the
smoothing parameter in our setting). On the other hand, uncertainty quantification is
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routinely achieved in the Bayesian framework by studying the variability of the poste-
rior samples, whereas we employed computationally expensive bootstrap techniques.

A technical issue with the presented method which calls for further research con-
cerns the configuration of the B-spline basis densities used in the estimation. We
employed an ad hoc approach to account for the fact that in the tails of the condi-
tional distribution only few observations are available to infer the shape of the density.
Our approach effectively increases the penalty for non-smoothness in the tails of the
distribution. The use of equally spaced sample quantiles, as suggested by Ruppert
(2002), seems a promising avenue to explore in this regard. An alternative would be
to follow the literature on adaptive smoothing parameter selection, e.g., Krivobokova
et al. (2008), where the smoothing parameter would be specified as another spline
function on the log-volatility domain. However, this would considerably increase the
complexity of the likelihood-based analysis andmay therefore easily lead to numerical
or identifiability problems.

While we modelled the conditional distribution in the SV model in a nonpara-
metric way, we still assumed a parametric distribution form of the innovations in the
log-volatility process, which is not necessary. Furthermore, the possible incorpora-
tion of leverage effects into the model—i.e., the explicit modelling of a (negative)
correlation between returns and subsequent log-volatilities, as often done in para-
metric SV modelling (e.g., Harvey and Shephard 1996; Jacquier et al. 2004)—was
not discussed in the present manuscript, since we felt that in this first step towards
a frequentist framework for semiparametric SV modelling it is advisable to focus
on the inferential machinery, rather than on exploring the various possible varia-
tions in the model structure. Corresponding extensions are to be explored in future
research.

Overall, the approach shows promise as a useful novel tool for analyzing time series
of daily log-returns.We have illustrated that the approach can lead to an improved pre-
dictive capacity compared to basic parametric SV models, and in the real data analy-
ses we found some notable distributional shapes. In particular, our model revealed
negative skewness and heavy tails in the conditional distribution of the returns we
analyzed, while still identifying the behavior of the log-volatilities that is typical of
SV models. In out-of-sample comparisons, the parametric model with Student-t con-
ditional distribution performed about as well as our semiparametric model, and both
performed much better than the model with Gaussian conditional distribution, at least
for stock returns. It should be noted here that all validation samples that we consid-
ered involve rather extreme dynamics, since they comprise the recent financial crisis.
Further research needs to be done to investigate the performance of our approach
in different scenarios, including calmer markets. The present manuscript is intended
mainly to introduce the frequentist estimation framework and to outline its potential.
While much work remains to be done, we strongly believe that the model’s flexibility
with regard to describing asymmetries and extreme events, and the relative acces-
sibility of the maximum likelihood framework combined with P-spline techniques,
will render our approach and potential future extensions a useful tool in portfolio
management.
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6 Supplementary Material

R and C++ code 1) to generate artificial data as in the simulation study and 2) to fit,
to the generated data, the SV0, SVt and SVsp models (format: main R code in .R file
and additional C++ code in .cpp file).

Acknowledgments The authors would like to thank the two anonymous referees who provided useful
comments on an earlier version of this manuscript.

Appendix: HMM essentials

This appendix reviews some HMM basics. A standard m-state HMM has the same
two process structure as SV models and SSMs, only that the unobserved process is
a Markov chain and hence discrete-valued rather than continuous-valued. Consider
an HMM with observable process {Xt }Tt=1 and underlying Markov chain {St }Tt=1.
Given the current state of St , the variable Xt is usually assumed to be conditionally
independent from previous and future observations and states. The Markov chain is
typically considered to be of first order, and the probabilities of transitions between the
different states are summarized in the m ×m transition probability matrix � = (

γi j
)
,

where γi j = Pr
(
St+1 = j |St = i

)
, i, j = 1, . . . ,m. The initial state probabilities

are summarized in the vector π , where πi = Pr(S1 = i), i = 1, . . . ,m. It is usually
convenient and appropriate to assume π to be the stationary distribution. For the
describedHMM,with observations given by x1, . . . , xT and underlying states denoted
by s1, . . . , sT , the likelihood is given by

LHMM = f (x1, . . . , xT ) =
m∑

s1=1

. . .

m∑
sT =1

f (x1, . . . , xT |s1, . . . , sT ) f (s1, . . . , sT )

=
m∑

s1=1

. . .

m∑
sT =1

πs1

T∏
t=1

f (xt |st )
T∏
t=2

γst−1,st .

In this form the likelihood involves mT summands, which would make a numeri-
cal maximization infeasible in most cases. However, there is a much more efficient
way of calculating the likelihood LHMM, given by a recursive scheme called the for-
ward algorithm. To see this, we consider the vectors of forward variables, defined
as αt = (

αt (1), . . . , αt (m)
)
, t = 1, . . . , T , where αt ( j) = f (x1, . . . , xt , St = j),

j = 1, . . . ,m. We then have the recursion:

α1 = πQ(x1), αt+1 = αt�Q(xt+1), (10)

whereQ(xt ) = diag
(
f1(xt ), . . . , fm(xt )

)
, with fi (xt ) = f (xt |St = i). The recursion

(10) can be derived in a straightforwardmanner using the HMMdependence structure.
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The likelihood can then be written as a matrix product:

LHMM =
m∑
i=1

αT (i) = πQ(x1)�Q(x2) . . . �Q(xT )1,

where 1 ∈ Rm is a column vector of ones. For a missing observation xt , the associated
matrix Q(xt ) is simply replaced by the m × m identity matrix. For more details on
HMMs, see for example Zucchini and MacDonald (2009).
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