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Summary

1. Due to the substantial progress in tracking technology, recent years have seen an explosion in the amount of

movement data being collected. This has led to a huge demand for statistical tools that allow ecologists to draw

meaningful inference from large tracking data sets.

2. The class of hidden Markov models (HMMs) matches the intuitive understanding that animal movement is

driven by underlying behaviouralmodes and has proven to be very useful for analysingmovement data. For data

that involve a regular sampling unit and negligible measurement error, these models usually are sufficiently flexi-

ble to capture the complex correlation structure found in movement data, yet are computationally inexpensive

compared to alternativemethods.

3. The R package moveHMM allows ecologists to process GPS tracking data into series of step lengths and

turning angles, and to fit an HMM to these data, allowing, in particular, for the incorporation of environmental

covariates. The package includes assessment and visualization tools for the fittedmodel.

4. We illustrate the use ofmoveHMMusing (simulated)movement of the legendarywild haggisHaggis scoticus.

Our findings illustrate the role our software, and movement modelling in general, can play in conservation and

management by illuminating environmental constraints.

Key-words: behavioural state, maximum likelihood, random walk, state-switching model, teleme-

try data

Introduction

Quality and quantity of animal movement data are rapidly

increasing because of substantial improvements of telemetry

technology made in recent years. Although increasingly

sophisticated statistical methods are being developed in move-

ment ecology (Patterson et al. 2016), the extensive analysis of

large data sets is still a computational challenge, especially

because the development of user-friendly software is lagging

behind.

Among the variety of models that have been used to

analyse animal tracking data, hidden Markov models

(HMMs) have stood out in recent years because of their

appealing combination of model flexibility, clear inter-

pretability and computational tractability (e.g. Franke,

Caelli & Hudson 2004; Holzmann et al. 2006; Patterson

et al. 2009; Langrock et al. 2012; van de Kerk et al. 2015).

The HMM approach to movement modelling is part of

the wider family of state-switching models, which focus on

the decomposition of the movement process into distinct

underlying states. Such an approach matches our intuitive

understanding that most animals’ movement is driven by

switches in underlying behavioural modes.

Several general packages exist for fitting HMMs to data,

including depmixS4 (Visser & Speekenbrink 2010), Hidden-

Markov (Harte 2015) and msm (Jackson 2011). However,

these packages are underutilized by the ecological commu-

nity, because they do not offer an easy workflow to pro-

cess and analyse animal movement data. Other R

packages can be used for the analysis of animal tracking

data, such as adehabitatLT (Calenge 2006), crawl (Johnson

2015) and ctmm (Calabrese, Fleming & Gurarie 2016), but

none of the models that they implement focuses on draw-

ing inference on the animals’ behavioural state-switching

mechanisms. The package bsam (Jonsen et al. 2013) does

include multistate models, but focuses on the situation

where location error is significant. This is a difficult prob-

lem requiring detailed and computationally challenging

analysis solely for the purpose of inferring switching and

most likely movement paths. For high precision data,

much more flexible and efficient use of HMMs is possible,

yet until now, there has been no dedicated R package for

corresponding movement data.*Correspondence author. E-mail: tmichelot1@sheffield.ac.uk
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The new package moveHMM for the R environment (R

Core Team 2015) implements HMMs for the analysis of

animal movement data. The stable version of the package

is available on the Comprehensive R Archive Network

(CRAN), at https://cran.r-project.org/package=moveHMM,

under a license GNU GPL 3, and its latest version – as well

as the unit tests used during development – can be found

on the Github repository of the project, at

https://github.com/TheoMichelot/moveHMM. Additional

information on the functions included in the package can be

found in its vignette. There, we also provide the code for ana-

lysing the elk data set fromMorales et al. (2004).

In this paper, we briefly describe HMMs and explain

how they can be used to draw inference from animal

movement data. Subsequently, we give an overview of the

features of the package moveHMM, and demonstrate

them on an example using (simulated) wild haggis move-

ment data.

HiddenMarkovmodels for animalmovement

AnHMM is a time-series model comprising two processes: the

series of (possibly multivariate) observations, Z1; . . .;ZT, and

an underlying non-observable state sequence S1; . . .;ST. In the

basic model formulation, the process fStg takes values from

{1,. . .,N} and satisfies the Markov property – that is, it is a

finite-stateMarkov chain of first order. At any given time t, the

realization ofZt is assumed to have been drawn from one ofN

(possiblymultivariate) component distributions, as determined

by the value of the state process at time t. This dependence

structure is illustrated in Fig. 1. In the context of animal move-

ment, the underlying state process is often interpreted as a

proxy for the behavioural state of the animal, for example

more active (‘exploratory’) and less active (‘encamped’), as in

Morales et al. (2004).

Empirical movement data usually consist of time series of

coordinates of the animal’s locations on the plane,

ðx1; y1Þ; . . .; ðxT; yTÞ, from which various movement metrics

can be derived. In the standard HMM approach, the observa-

tion process is a bivariate time series with zt ¼ ðlt;/tÞ com-

prising the step length lt (the Euclidean distance between the

locations ðxt; ytÞ and ðxtþ 1; ytþ 1Þ) and the turning angle /t

(the change of direction between the directions of travel during

the intervals [t � 1,t] and [t, t + 1], respectively) of the animal.

For the HMMapproach to be applicable to animal movement

data, and in particular in order to use the packagemoveHMM,

the spatial measurement error in the data needs to be negligible

relative to the magnitude of relocation activity observed. In

addition, the data should be collected such that the observa-

tions are sampled on a regular basis (usually at regular time

intervals, though there can be other regular sampling units, for

example ‘a dive’ if positions are observed each time a marine

mammal comes to the sea surface; see, e.g., DeRuiter et al.

2016). Data that are missing at random on an otherwise regu-

lar sequence can easily be handled.

The state process fStg is characterized by its state transition

probabilities and, less importantly, by its initial-state distribu-

tion. The transition probability matrix of an N-state HMM,

CðtÞ, is defined as CðtÞ ¼ ðcðtÞij Þ, where i,j = 1,. . .,N and

cðtÞij ¼ PrðStþ 1 ¼ jjSt ¼ iÞ. In some cases, the state transi-

tion probabilities will be constant over time, that is cðtÞij ¼ cij
for all t, but more often it will be of interest to relate the transi-

tion probabilities to time-varying environmental (or other)

covariates (see, e.g., Dragon et al. 2012;McKellar et al. 2015).

The transition probability at time t, cðtÞij , can be linked to the

associated p covariates, xðtÞ
1 ; . . .;xðtÞ

p , via a multinomial logit

link:

cðtÞij ¼ expðgðtÞ
ij ÞPN

k¼1 expðgðtÞ
ik Þ

;

where

gðtÞ
ij ¼ bðijÞ0 þPp

l¼1 b
ðijÞ
l xðtÞ

l

0

(
if i 6¼ j;

otherwise:

For a given set of model parameters, the likelihood of the

data can be calculated using a recursive algorithm (known as

the forward algorithm), which in a very effective way considers

all possible state sequences that might have given rise to the

observed time series, exploiting the dependence structure of the

model. (In fact, the availability of this and other recursion tech-

niques is probably the key reason for the popularity of

HMMs.) This makes numerical maximization of the (log-)like-

lihood, and hence maximum likelihood estimation, feasible in

most cases. For a fitted model, one can easily obtain the most

likely sequence of states and also examine various variables of

interest such as the average rate of movement in each state.

For a comprehensive account of the HMMmachinery, we rec-

ommend Zucchini, MacDonald & Langrock (2016). Several

extensions, with a focus on their usefulness in movement mod-

elling, are discussed in Langrock et al. (2012). In movement

ecology, HMMs have successfully been used to analyse the

movement of, inter alia, caribou (Franke, Caelli & Hudson

2004), fruit flies (Holzmann et al. 2006), tuna (Patterson et al.

2009), panthers (van de Kerk et al. 2015), woodpeckers

(McKellar et al. 2015) andwhite sharks (Towner et al. 2016).

Overviewof the features ofmoveHMM

We now describe the main features of the package

moveHMM. For further details on the implementation, we

refer to the package’s documentation and vignette (Michelot

et al. 2015). The main functions of the package are listed in

Table 1.Fig. 1. Dependence structure in a hiddenMarkovmodel.
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DATA PREPROCESSING – prepData

Tracking data usually consist of series of coordinates (either

Easting–Northing or longitude–latitude). To fit an HMM

using moveHMM, it is necessary to derive the series of step

lengths and turning angles, as described in Section ‘Hidden

Markov models for animal movement’. This can be performed

with the function prepData. The user needs to store the

tracking data in a data frame, as typically output by the R

functions read.csv or read.table, with a column

for each coordinate. Both Easting–Northing and longitude–
latitude coordinates can be used with the function pre-
pData, as specified by an additional argument, ‘type’. If lon-

gitude and latitude values are used, the step lengths are

computed using the function spDistsN1 from the pack-

age sp (Bivand, Pebesma &Gomez-Rubio 2013), and are mea-

sured in kilometres. If Easting and Northing coordinates are

used, the step lengths are measured in the unit of the data. A

column ‘ID’ must be provided if several animals were tracked;

if ‘ID’ is not specified, all observations are assumed to come

from a single track. All additional columns are considered as

covariates, and should only contain numerical values. Categor-

ical covariates can however also be considered: for a categori-

cal covariate taking K levels, one simply needs to add K�1

dummy variables as columns to the data matrix, the j-th of

which indicating whether or not the covariate takes the j-th

level at the different observation times (such that level K is the

reference category). The functionprepData returns a data

frame of the movement data: IDs, coordinates, steps, angles

and optionally covariates (if provided).

MODEL FITTING – f i tHMM

The function fitHMM fits an HMM to the data via numeri-

cal optimization of the likelihood using the R function nlm.
The likelihood computation is based on the forward algorithm

(Zucchini, MacDonald & Langrock 2016, Chapter 3), and is

implemented in C++ for speed, using Rcpp (Eddelbuettel &

Francois 2011). To initiate the numerical maximization,

starting values for the model parameters need to be specified.

This choice is crucial, and the algorithmmight not find the glo-

bal maximum of the likelihood function, that is the maximum

likelihood estimate (MLE), if the initial parameters are poorly

chosen. The standard remedy is to run the maximization many

times using a range of different starting values, possibly ran-

domly selected. Such an approach gives an idea of the rough-

ness of the likelihood surface and the reliability of the

candidateMLE.

A variety of models can be fitted in moveHMM. Gamma,

Weibull, log-normal and exponential distributions can be spec-

ified for the step lengths, and von Mises and wrapped Cauchy

distributions can be specified for the turning angles. The choice

of the family of state-dependent distributions can affect the

goodness-of-fit (see, e.g. the comparison of different distribu-

tions in Langrock et al. 2012). Either the gamma or the Wei-

bull distribution is usually used for the step lengths, while the

von Mises and the wrapped Cauchy distribution are equally

popular formodelling the turning angles (see Codling, Plank&

Benhamou 2008, for an introduction to these circular-valued

distributions). Zero-inflation can be added to the state-depen-

dent distributions of the step lengths to allow for steps of

length zero (see, e.g. the analysis of woodpecker movement in

McKellar et al. 2015). Corresponding distributions are mix-

tures of a point mass on zero and a strictly positive distribution

(such as the gamma distribution). Amodel can also be fitted to

one-dimensional data of step lengths only, using the option

angleDist="none".
It is possible to fit a model to a data set comprising several

time series, possibly collected on several different animals. In

such a case, all individuals are assumed to share the same

movement model, that is the same parameters (an approach

usually referred to as ‘complete pooling’; see Langrock et al.

2012). The package does not currently allow for fitting HMMs

including random effects.

The state transition probabilities can be specified as func-

tions of one or more covariates, as described in ‘Hidden Mar-

kov models for animal movement’, using the argument

‘formula’ of the function fitHMM. This argument is an R

model formula with default value formula=�1, corre-
sponding to the case where no covariate is included. For a

more complex example of the use of ‘formula’, see ‘Case study:

(simulated) wild haggismovement’.

It is possible to fit a stationary HMM to the data, using the

argument ‘stationary’ in fitHMM. If covariates are included
in the model, then the transition probabilities are time-depen-

dent such that the HMM cannot be stationary. Thus, this

option can only be used with covariate-freemodels. By default,

the initial distribution of the hidden Markov process is esti-

mated; however, when stationary=TRUE, the initial

distribution is chosen to be the stationary distribution d
defined as the solution of d = dΓ subject to

PN
i¼ 1 di = 1. Using

the stationary distribution savesN�1model parameters, but is

only justifiable when at the start of the time series the animal

can reasonably be assumed to be in steady state (which, for

example, would not be the case if the tagging interferes with

the behaviour of the animal, and recordings are made

Table 1 . Main functions of the packagemoveHMM.

Function Description

AIC.moveHMM AICof one or several models

CI Confidence intervals for amodel’s

parameters

fitHMM Fit anHMMto data

plot.moveData Plot summary graphs ofmovement data

plot.moveHMM Plot summary graphs of amovementmodel

plotPR Plot time series, qq-plots and sample ACFs

of pseudo-residuals

plotStates Plot the (Viterbi-)decoded states and state

probabilities

prepData Pre-process tracking data

pseudoRes Pseudo-residuals of amodel

simData Simulatemovement data using anHMM

stateProbs State probabilities

viterbi Most likely state sequence (using the Viterbi

algorithm)
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immediately after the tagging). Unless the time series consid-

ered are very short, the choice between using the stationary dis-

tribution as initial distribution or estimating the latter has little

practical relevance (Zucchini,MacDonald&Langrock 2016).

Model selection techniques can be used to choose an appro-

priate number of states of the HMM, or to determine if a

covariate should be included in the model. The function AIC
can be applied to one or several fitted movement models in

moveHMM, returning the scores of the Akaike Information

Criterion (AIC) for the models considered, in ascending order.

Users should not blindly follow such information criteria,

especially with regard to the selection of the number of states –
it is our experience that such formal model selection

approaches tend to favour overly complex models, often to an

extent such that selected models become challenging to inter-

pret and very difficult to work with in practice (Langrock et al.

2015). The main reason for this is that, while very natural

models for animal movement data, HMMs are still simplistic

relative to the actual data-generating process underlying an

animal’s movement track. As a consequence, additional states

are often included in a model to compensate for a simplistic

model formulation, or to address artefacts such as outliers.

While it is therefore difficult tomake general recommendations

on how to select the number of states, we advise to use criteria

such as the AIC for guidance only, and additionally using both

biological intuition and comprehensive model assessments as

described in the subsequent section. For example, such investi-

gation could reveal that a two-state model may appear inferior

to a three-state model due to a single outlier rather than a gen-

uine pattern that requires a third state.

Exact confidence intervals for the MLEs of the parameters

of an HMM are not available, but, using asymptotic theory,

they can be approximated based on theHessian of the negative

log-likelihood (i.e. the observed Fisher information). Given a

fitted model, the function CI computes approximate confi-

dence intervals for the model’s parameters. Note that these are

based on asymptotic normality results for the MLE and are

not reliable for small sample sizes (Zucchini, MacDonald &

Langrock 2016, Chapter 3).

MODEL CHECKING – pseudoRes

Goodness-of-fit of a fitted HMM can be assessed using

pseudo-residuals, which are also known as quantile residuals

(Zucchini, MacDonald & Langrock 2016, Chapter 6). If the

model is the true data-generating process, then the pseudo-resi-

duals follow a standard normal distribution. For a model that

describes the data well, the pseudo-residuals should be approx-

imately normally distributed. Model adequacy can be checked

by testing the pseudo-residuals for normality, or by consider-

ing qq-plots of the pseudo-residuals against the theoretical

quantiles of the standard normal distribution. Patterson et al.

(2009), Basson et al. (2012), Langrock et al. (2012) and

Langrock et al. (2015) use pseudo-residuals in the context of

animal movementmodelling.

In the package moveHMM, the function pseudoRes
returns one series of pseudo-residuals for the step lengths and

one for the turning angles, given a fitted model. In addition,

the functionplotPR plots the time series of the pseudo-resi-

duals, as well as qq-plots of the pseudo-residuals against the

standard normal quantiles and the sample autocorrelation

functions (ACFs) of the pseudo-residuals. As with regression

models, in the qq-plots, a deviation from the identity line indi-

cates a deviation from normality, and hence a lack of fit of the

model. The sample ACFs can reveal residual autocorrelation,

that is correlation in the data that was not captured by the

model. The latter could be an indication that more states are

required, or that a first-order Markov chain is not appropriate

for describing the evolution of the states.

STATE DECODING – v i t e rb i and s ta teProbs

To analyse the process of behavioural state-switching, it is use-

ful to decode the sequence of states of the underlying unob-

served Markov chain most likely to have generated the

observations, given a fitted model. In the context of HMMs,

this sequence is computed using the Viterbi algorithm (Zuc-

chini, MacDonald &Langrock 2016, Chapter 5), implemented

in the functionviterbi of the packagemoveHMM.

It is also possible to calculate the probabilities of the process

having been in the different states, 1,. . .,N, at any given time

point, given a fitted model. For an N-state HMM and an

observed (bivariate) time series of length T, the function

stateProbs returns a T 9 N matrix with the j-th ele-

ment in row t giving the probability of the Markov chain hav-

ing been in state j at time t. The most likely states and the state

probabilities can be plotted for each animal using the function

plotStates.
The decoded state sequences can be very useful in providing

information on how animal behaviour varies in space. For

example, in Towner et al. (2016), the decoded behavioural

states of white sharks were superimposed on their movement

tracks, which clearly highlighted spatial variation in the ani-

mals’ behavioural patterns. Similarly, Lidgard et al. (2012)

used HMMs to categorize movement data into behavioural

states, and link foraging activity to at-sea associations of grey

seals.

MODEL VISUALIZATION – p lo t

A fitted model, as output by fitHMM, can be plotted with

the generic function plot. This displays histograms of

the step lengths and turning angles, above which are plotted

the estimated probability density functions in each state. The

densities are weighted by the relative frequency of each state

in the most likely state sequence, decoded using the Viterbi

algorithm. If covariates are included in the model, plots of

the transition probabilities as functions of each covariate are

also generated. If several covariates are included, then the

transition probabilities are plotted against each covariate

separately, fixing the remaining at their respective mean val-

ues. Finally, the plot function also outputs maps of the

animals’ tracks, colour-coded according to the most likely

state sequence.
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Figures 3 and 4 illustrate the plots produced byplotwhen

given a fittedmodel as an argument.

SIMULATION TOOL – s imDa ta

The function simData simulates movement data from an

HMM, given the parameters provided. Like the pre-processing

function prepData, it returns a data frame of the move-

ment data. In particular, once a model has been fitted to real

data with fitHMM, it can be passed as an argument to

simData, so that the estimates of the model parameters are

used in the simulation model. In this way, the patterns in the

simulated movement can be compared to those of the real

movement of the animal, corresponding to a visual assessment

of the fit. While this does not constitute a formal check of a fit-

ted model, in our experience, this is a useful informal way to

identify potential weaknesses of a givenmodel formulation.

However, it is important to note that, in general, it is not sen-

sible to use such a simulation engine for further inference, for

example to try to predict the influence that future changes in

the covariate values would cause on the animal’s behaviour.

This is because the simulations, even if conditional on esti-

mated parameters, are essentially ‘data-free’; whereas in the fit-

ted model, the data are crucial in constraining the state

switches even when the strict structure of the model constitutes

a limited description of the behavioural switching process.

There are exceptions to this rule-of-thumb, but in general, we

urge caution inmaking inference from simulation results.

One area where simulations can be validly used, in addition

to the informal model checking described above, is in a para-

metric bootstrap for quantifying estimator uncertainty.

Case study: (simulated) wild haggismovement

We illustrate the functionality of the package using wild haggis

Haggis scoticus movement data. The data set involves move-

ment tracks of 15 individual wild haggises, with 400 locations

per track.1 In the following, we illustrate how the package

moveHMMcan be used to investigate themovement strategies

adopted by the wild haggis in response to environmental con-

ditions. Of particular interest is the role played by the animals’

leg length. The wild haggis’s left ipsilateral pair of legs is con-

siderably longer than its right counterpart (King et al. 2007),

an evolutionary adaptation enabling the animal to efficiently

circle along topographic contours of the steep hills in the Scot-

tish Highlands (though only clockwise, as seen from above2).

In this illustrative example, we investigate how wild haggis

movement strategies vary with respect to mountain slope. The

underlying rationale for our analysis is to characterize an opti-

mal topographic slope, or range of slopes, at which this species’

anatomy allows for high movement speeds, while at other

slopes the animals might have to resort to primitive crawling

strategies. It seems obvious that net-energetic returns will be

reduced in suboptimal environments. Such predictions will be

useful for reserve planning or other forms of spatial manage-

ment for this species.

The 15 tracks, comprised of the locations and associated

covariate values, are stored in a csv file ‘rawHaggises.csv’, pro-

vided in the supplementary material (Data S1). The code used

to simulate the data is provided in Appendix S4 (‘simulatehag-

gisdata.R’), and the code used to process and analyse the data

withmoveHMM is available inAppendix S2 (‘casestudy.R’)

Having loaded the package moveHMM, we load and pre-

process the data inR (version 3.2.0):

rawHaggis<-read.csv(“rawHaggises.csv”)

processedHaggis<-prepData(rawHaggis,type=“UTM”)

The resulting data frame ‘processedHaggis’ comprises the

columns ‘ID’, ‘step’, ‘angle’, ‘x’, ‘y’, ‘slope’ and ‘temp’. The lat-

ter two are time-varying environmental covariates giving the

mountain slopes (in degrees) and the temperatures (in degree

Celsius) associated with the observations. A subset of the data,

namely the observations made for the haggis with ‘ID = 2’, is

visualized in Fig. 2 – these graphics were obtained using the

command plot(processedHaggis). The haggis’

characteristic (clockwise) circling can clearly be seen in the left

plot.

Considering gamma step length distributions and vonMises

turning angle distributions, the following models were fitted:

N = 2 states, no covariates influencing the state transition

probabilities (‘m1’,formula=�1);N = 2, linear predictor

with covariate ‘slope’ (‘m2’,formula=�slope);N = 2,

linear predictor with covariates ‘slope’ and ‘temp’ (‘m3’,

formula=�slope+temp); N = 2, quadratic predic-

tor with covariate ‘slope’ (‘m4’, formula=�slope+I
(slope^2)). In each case, a common model was fitted to

all animals, that is all individuals were assumed to share the

samemovement parameters.

On an octa-core i7 CPU, at 3�6 GHz and with 8 GB RAM,

fitting the simplest model (‘m1’) took 10 s, while fitting the

more complexmodel ‘m4’ took 53 s. From the given set of can-

didate models, the AIC (obtained withAIC(m1,m2,m3,
m4)) strongly favours ‘m4’, and there is no indication that the

temperature (covariate ‘temp’) affects the state-switching

dynamics.

For the fittedmodel ‘m4’, Figs 3 and 4 display the estimated

state-dependent distributions and the estimated effect of the

covariate ‘slope’ on the state transition probabilities. These

plots were obtained using the command plot(m4). From
Fig. 3, we see that one state involves mostly short steps and

many turnings (state 1) and the other state involves longer

steps and less frequent turnings (state 2). Thus, the haggises

appear to exhibit the typical movement pattern that has previ-

ously been identified for various other species, including, inter

alia, elk (Morales et al. 2004), fruit flies (Holzmann et al.

2006), woodpeckers (McKellar et al. 2015) and white sharks

(Towner et al. 2016). Notably, the mean turning angle in state

1Because we encountered unexpected but insurmountable difficulties

when trying to tag individuals in the wild, we resort to simulated data

in this work, where we tried to generate movement patterns that we

believe are realistic for wild haggises.
2The haggises may also move up and down altitudinal gradients, but

only sideways to remain upright.
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2 was estimated as �0�299 – with 95% confidence interval

[�0�312, �0�287], obtained using CI(m4) – hence confirm-

ing the tendency of the haggises to circle clockwise (when

active).

From Fig. 4, it can be seen that there is a range of relatively

moderate mountain slopes, roughly from 10 � to 25 �, at which
the haggises are highly likely to be in state 2 – due to both a

high probability of a switch to state 2when in state 1 and a high

probability of remaining in state 2 when in state 2 – in which

higher movement rates and more directed movement are

observed. In contrast, when encountering slopes outside this

range, that is either relatively flat terrain or very steep hillsides

([ 30 �), then the haggises are very likely to leave state 2 and

spend prolonged periods in state 1, the state involving very lit-

tle and undirected movement activity. A possible explanation

is that the anatomy of this species only allows for efficient and
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hence fast movement at moderate slopes. In flat terrain, the

haggises might have to resort to primitive crawling strategies,

while in very steep terrain, they will likely fall over. State 1

would then encompass the haggises’ clumsy attempts to get

back to more favourable terrains, while state 2 captures the

haggises’ running around the hills. According to the most

likely state sequence under the fitted model ‘m4’, decoded

using viterbi(m4), the haggises spent 55�5% of the

time running around the hills (i.e. in state 2). The map of

the movement track for animal 2, coloured by Viterbi-decoded

states, is given in Appendix S1, part A (Supporting

information).

Jarque–Bera tests for normality of the pseudo-residuals –
obtained with pseudoRes(m4) – yield P-values of 0�75
and 0�65 for the residuals associated with the step lengths and

the turning angles, respectively, such that normality is not

rejected in either case. There is also no indication of residual

autocorrelation (shown in Appendix S1, part B). The model

‘m4’ hence seems to fit the data well.

An example of a more extensive simulation study is pro-

vided in Appendix S1, part C, to assess the performance of

parameter estimation and state decoding inmoveHMM.

Conclusion and future improvements

We have developed the package moveHMM to facilitate the

analysis of animal movement data with HMMs. Collection of

such data is nowadays done routinely, and we hope that our

package will make the very intuitiveHMM framework accessi-

ble to applied researchers. FittingHMMs can be computation-

ally intensive if the likelihood calculation is coded inefficiently,

and our implementation of the likelihood function should help

increasing the utility of theHMMapproach inmovement ecol-

ogy for large data sets. The current version can deal with very

large data sets on standard desktop PCs (e.g. fitting a covari-

ate-free HMM to a time series of a million observations in

<20 min).

The package allows for statistical analyses of data indi-

cating multiple phases of movement. More generally, the

HMM formulation implemented in the package is suited

to bivariate time series with one positive linear and one cir-

cular variable (step lengths and turning angles in case of

animal movement data), driven by underlying non-observa-

ble states, and as such can also be used, for example to

analyse vessel monitoring data to characterize the spatial

distribution of fishing effort (Peel, Good & Quinn 2011;

Charles, Gillis & Wade 2014), to model wind speed and

direction (Holzmann et al. 2006) and to model wave

heights and directions (Bulla et al. 2012).

The package is under further development, and we are

considering the option of including additional features. In

particular, several non-trivial extensions of the model formu-

lation could potentially be implemented, such as random

effects (Altman 2007; McKellar et al. 2015), semi-Markov

state processes (Langrock & Zucchini 2011) or biased ran-

dom walk behaviour (Langrock et al. 2012). However,

implementing these at a high level of generality in the pack-

age moveHMM is anything but straightforward, such that

we are counting on users’ feedback to help us prioritize the

most useful extensions.

We welcome bug reports, feedback and suggestions for the

development ofmoveHMM.
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