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Abstract. The two dominant approaches for the analysis of species–habitat associations in
animals have been shown to reach divergent conclusions. Models fitted from the viewpoint of
an individual (step selection functions), once scaled up, do not agree with models fitted from a
population viewpoint (resource selection functions [RSFs]). We explain this fundamental
incompatibility, and propose a solution by introducing to the animal movement field a novel
use for the well-known family of Markov chain Monte Carlo (MCMC) algorithms. By design,
the step selection rules of MCMC lead to a steady-state distribution that coincides with a given
underlying function: the target distribution. We therefore propose an analogy between the
movements of an animal and the movements of an MCMC sampler, to guarantee convergence
of the step selection rules to the parameters underlying the population’s utilization distribu-
tion. We introduce a rejection-free MCMC algorithm, the local Gibbs sampler, that better
resembles real animal movement, and discuss the wide range of biological assumptions that it
can accommodate. We illustrate our method with simulations on a known utilization
distribution, and show theoretically and empirically that locations simulated from the local
Gibbs sampler give rise to the correct RSF. Using simulated data, we demonstrate how this
framework can be used to estimate resource selection and movement parameters.

Key words: animal movement; habitat selection; Markov chain Monte Carlo; resource selection function;
space use; step selection function; utilization distribution.

INTRODUCTION

Understanding how animals use a landscape in
response to its habitat composition is a crucial question
in pure and applied ecology. Such insights are achievable
only by confronting species–habitat association models
with usage data, collected either via transect surveys or
via biologging methods. Statistical inference, to link these
data to environmental variables, can be approached from
a population perspective, using resource selection func-
tions (RSF; Manly et al. 2002). Alternatively, if individu-
ally referenced data (i.e., telemetry) are available, the
question can be addressed from the viewpoint of the sin-
gle animal, via step selection functions (SSF; Thurfjell
et al. 2014). The population/individual dichotomy
between these two approaches is not always clear-cut,
because RSFs can be applied to the utilization distribu-
tion of single animals, and SSFs can combine joint
insights from multiple individuals. Nevertheless, the two
methods roughly fall at opposite ends of the Eulerian-
Lagrangian spectrum outlined by Turchin (1998).

Therefore, researchers in this area have tended to think of
the habitat preference parameters obtained via SSFs as
the microscopic rules of movement, while the correspond-
ing parameters of an RSF are implicitly thought of as the
macroscopic patterns obtained in the long term. Hence,
SSF models are increasingly concerned with the geometry
of movement trajectories (e.g., step lengths and turning
angles in different behavioural states in Squires et al.
[2013]), while RSF predictions often make a pseudo-equi-
librium assumption (Guisan and Thuiller 2005), which is
a biological term reminiscent of the mathematical idea of
steady-state distributions. But herein lies a fundamental
problem for this entire field of statistical analysis. A cor-
rectly formulated framework of movement must work
across scales, such that, when the microscopic rules of
individual movement are scaled up in space and time,
they give rise to the expected macroscopic distribution of
a population. However, there is now both analytical (Bar-
nett and Moorcroft 2008, Moorcroft and Barnett 2008)
and numerical (Signer et al. 2017) evidence that the distri-
bution constructed from the coefficients of a SSF does
not match the spatial predictions of the RSF fitted to the
same data. Here, we explain how this discrepancy arises
and propose a solution.
A RSF w(c) is proportional to the probability of a unit

of habitat c being used (Boyce and McDonald 1999).
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Depending on the type of usage data available, RSFs are
derived in two steps. First, a model is fitted to the
response and explanatory data. For example, a point pro-
cess model (Aarts et al. 2012) or a use-availability logistic
regression (Boyce and McDonald 1999, Aarts et al. 2008)
can be used for telemetry data, and a log-linear regression
can be used on count data from regular grids or line tran-
sects. Second, irrespective of the type of response data
and model fitting method, the linear predictor of the
resulting statistical model is transformed via a non-nega-
tive function (Manly et al. 2002: Chapter 2), of which the
most common is the exponential

wðcÞ ¼ expðb1c1 þ b2c2 þ � � � þ bmcmÞ (1)

where c is a vector of m covariate values, and b1, b2, . . . ,
bm are the associated regression coefficients. The RSF
can be used to model the utilization distribution pðxÞ,
i.e., the distribution of the animal’s space use

pðxÞ ¼ expðb1c1ðxÞ þ b2c2ðxÞ þ � � � þ bmcmðxÞÞR
X expðb1c1ðzÞ þ b2c2ðzÞ þ � � � þ bmcmðzÞÞdz

(2)

where the functions c1, c2, . . ., cm associate a spatial loca-
tion x to the corresponding covariate values, and X is
the study region. The utilization distribution is normal-
ized by the denominator in Eq. 2 to ensure that it
defines a valid probability distribution for x, hence the
lack of an intercept in the linear predictor. Although
they can encompass a wider range of environmental con-
ditions, the covariates are often called resources in this
context. In the following, we use “covariates” and “re-
sources” interchangeably.
Resource selection function approaches are commonly

used to estimate the apparent effect of a spatial covariate
on a species. The resource selection coefficients bk char-
acterize this effect for each of the m covariates (bk > 0:
preference; bk < 0: avoidance; bk = 0: indifference; see
Avgar et al. [2017] for a discussion of the interpretation
of the bk in terms of selection strength). However, recent
work has shown that these interpretations are highly
sensitive to the context in which the organisms are being
studied, in particular, the availability of all habitat types
to the animals (Beyer et al. 2010, Matthiopoulos et al.
2011, Paton and Matthiopoulos 2016). Thus, in this
framework, the definition of habitat availability, deter-
mined by assumptions of spatial accessibility (Matthio-
poulos 2003), is important in deducing preference from
observed usage. For example, when using RSFs to ana-
lyze a time series of positions from a ranging animal, it
may not be plausible to assume that all locations in the
home range are accessible by the animal at every step
(Northrup et al. 2013). Resource selection function
approaches are often forced to treat such non-indepen-
dence as a statistical nuisance (Aarts et al. 2008, Fieberg
et al. 2010, Johnson et al. 2013), but step selection
approaches treat it as an asset.

In step selection analyzes, the likelihood p(y|x) of a
potential displacement by the animal to a location y over
a given time interval (typically, the sampling interval) is
modeled in terms of the habitat composition in the
neighborhood of the animal’s current position x

pðyjxÞ ¼ /ðyjxÞwðcðyÞÞR
X /ðzjxÞwðcðzÞÞdz (3)

where /ð�jxÞ is defined over a spatial domain X, and, for
any location x, c(x) = (c1(x), c2(x), . . ., cm(x)). The func-
tion /ð�jxÞ is called the resource-independent movement
kernel around x (Rhodes et al. 2005, Forester et al. 2009),
and it describes the density of endpoints for a step starting
in x, in the absence of resource selection. To link the
movement to environmental covariates, w is modeled
using the same log-linear link as the RSF, given in Eq. 1.
In this context, the term “step selection function” is most
often used for w (e.g., by Fortin et al. 2005, Thurfjell et al.
2014); however, note that it is sometimes used for the
whole numerator in the right-hand side of Eq. 3 (see For-
ester et al. 2009). In the following, we call w the SSF.
The choice of the function / characterizes accessibility,

and hence determines availability, in a step selection
model; it corresponds to the distribution of feasible steps
over one time interval, with origin x, when the resources
do not affect the movement. It can, for example, be a uni-
form distribution on a disc around the current location x
(e.g., Arthur et al. 1996), or obtained from the empirical
distributions of movement metrics (e.g., step lengths and
turning angles in Fortin et al. [2005]).
Step selection functions are most often fitted using

conditional logistic regression on matched use-availabil-
ity data, where each observed step xt ! xtþ1 is matched
to a set of random steps generated from /ð�jxtÞ (Thurf-
jell et al. 2014). Duchesne et al. (2015) showed that a
step selection model defines a movement model equiva-
lent to a biased correlated random walk. Biased corre-
lated random walks are routinely used in ecology as a
flexible basis for models of individual movement
(Turchin 1998, Codling et al. 2008). Avgar et al. (2016)
extended the step selection approach to allow simultane-
ous inference on habitat selection and on the movement
process, making it a very attractive framework to esti-
mate habitat preference from movement data (Proko-
penko et al. 2017, Scrafford et al. 2018). Step selection
models have been used to analyze the impact of land-
scape features on animal space use (e.g., Coulon et al.
2008, Roever et al. 2010), as well as animal interactions
(Potts et al. 2014b).
Although the RSF and SSF are typically described

with the same notation, and used for the same purpose
of estimating habitat preference, it can be shown that
their steady-state predictions do not generally coincide.
For a known utilization distribution, Signer et al. (2017)
showed empirically that the normalized SSF (“naive”
estimate) differed from the utilization distribution. In
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particular, the difference was greater when / was narrow
compared to the scale of habitat features. Similarly, Bar-
nett and Moorcroft (2008) showed that, for the step
selection model defined in Eq. 3, the steady-state distri-
bution of the animal’s location (i.e., its utilization distri-
bution) is given by

pðxÞ ¼ wðcðxÞÞ R wðcðyÞÞ/ðyjxÞdyR
wðcðyÞÞ R wðcðzÞÞ/ðzjyÞdzdy : (4)

That is, the steady-state distribution of the model is
generally not proportional to the SSF w, and that dis-
crepancy crucially depends on the choice of the
resource-independent movement kernel /. An example
of this is their earlier result (Moorcroft and Barnett
2008) that under one specific set of assumptions, the
steady-state distribution is approximately proportional
to the square of the SSF.
Although it may seem disconcerting that the two

approaches lead to different estimates of w, the cause of
this apparent paradox is partly due to the notational mis-
use of the same symbol for what are, in effect, different
objects. The SSF captures local aspects of the animal’s
movement, because it only considers a neighborhood of
the current location of the animal (determined by /) and
only becomes a better approximation of the RSF when
the scale of / increases (Barnett and Moorcroft 2008).
The parameters of the two objects coincide in the limiting
case of unconstrained mobility, i.e., when the availability
assumed by both methods is global. However, in every
other case, the two methods are different. Schl€agel and
Lewis (2016) also noted that, unlike RSF models, stan-
dard SSFs are scale dependent, in that their habitat selec-
tion estimates depend on the time scale of the
observations (although see Hooten et al. [2014] for a SSF
approach with a user-defined scale of selection).
Several approaches have been suggested to approxi-

mate the steady-state distribution of SSF movement
models. In particular, Avgar et al. (2016) and Signer
et al. (2017) showed that simulations from a fitted SSF
could be used to obtain estimates of the underlying uti-
lization distribution. Similarly, Potts et al. (2014a)
described a numerical method to compute the utilization
distribution given in Eq. 4, as it generally has no closed
form expression. Those approaches are useful to predict
space use from SSFs, but they do not allow the steady-
state distribution of locations to be modeled in a simple
parametric form, as in Eq. 2. One important conse-
quence is that, because the utilization distribution of SSF
models is not modeled by a RSF, joint inference from
telemetry data and survey data into habitat selection and
space use has not been possible with existing approaches.
Rather than seeking an equivalence of the parameters

estimated by RSF and SSF methods, a better question to
ask is: under what assumptions do the parameters esti-
mated by a SSF lead to movement that scales to the distri-
bution yielded by the parameters of a RSF model? In A
model of step selection using a movement-MCMC analogy,

we reconcile resource selection and step selection concep-
tually, with a new step selection model for which the long-
term distribution of locations is guaranteed to be propor-
tional to the RSF. Our method uses an analogy between
the movement of an animal in geographical space and the
movement of a Markov chain Monte Carlo (MCMC)
sampler in its parameter space. In The local Gibbs sampler,
we make these concepts applicable in practice, by develop-
ing a family of MCMC algorithms with considerable
potential for encompassing realistic movement assump-
tions. In Simulations, we illustrate our method using simu-
lations on a known utilization distribution. We verify that
the distribution of simulated locations corresponds to the
correct RSF, and we present a proof-of-concept analysis
to demonstrate the potential of the method for estimating
resource selection coefficients and parameters of the
movement process from telemetry data.

A MODEL OF STEP SELECTION USING A

MOVEMENT-MCMC ANALOGY

Markov chain Monte Carlo methods are a general
framework to sample from a probability distribution, ter-
med the target distribution (Gilks et al. 1995). This
approach is mostly used for Bayesian inference, to sample
from the (posterior) distribution of a set of unknown
parameters (Gelman et al. 2014: Chapter 11). It includes
a very wide class of algorithms, among them the widely
used Metropolis-Hastings and Gibbs samplers. An
MCMC algorithm describes the steps to generate a
sequence of points x1, x2, x3 . . ., whose long-term distri-
bution is the target distribution. Each MCMC algorithm
is defined by its transition kernel p(xt+1|xt), which deter-
mines (for any t = 1, 2, . . .) how the point xt+1 should be
sampled, given xt. For example, in a Metropolis-Hastings
algorithm, the transition kernel is a combination of the
proposal distribution and the acceptance probability

pðxtþ1jxtÞ ¼ pðxtþ1 is proposedjxtÞ pðxtþ1 is acceptedjxtÞ:

In general, given some easily satisfied technical condi-
tions, a sufficient condition for pðxtþ1jxtÞ to define a
valid MCMC algorithm for the target distribution p
(i.e., to ensure that the distribution of samples will con-
verge to p) is the detailed balance condition

8x; y; pðyÞpðxjyÞ ¼ pðxÞpðyjxÞ: (5)

That is, if the process is in equilibrium with distribu-
tion p, then the rates of moves in each direction between
any x and y balance out.
We propose an analogy between an animal’s observed

movement in n-dimensional geographical space, and the
movement of an MCMC sampler in a n-dimensional
parameter space, for which the target distribution is the
utilization distribution. That is, we consider that a
tracked animal “samples” spatial locations in the short
term from some movement model and, in the long run,
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from its utilization distribution, in the same way that an
MCMC algorithm samples points in the short term from
some transition kernel and in the long term from its tar-
get distribution. An MCMC algorithm then defines a
movement model, for which the steady-state distribution
is known. The dynamics of the movement process xt are
described by the transition kernel of the algorithm such
that, at each time point t = 1,2,. . ., the next location xt+1
is sampled from p(xt+1|xt). By the properties of MCMC
samplers, the steady-state distribution for xt is p. The
utilization distribution can be modeled with the RSF, as
defined in Eq. 2, to link the target distribution of the
movement model to the distribution of resources.
An MCMC algorithm, if viewed as a movement

model, can then be used to analyze animal tracking
data, in the following steps. Although we focus on step 1
in this paper, we illustrate steps 2 and 3 with a simulated
example in Local Gibbs estimation.

1) Choose an MCMC algorithm, to be used as a model
of animal movement and habitat selection. We sug-
gest one such algorithm in The local Gibbs sampler.

2) Write the likelihood of the model. Under an MCMC
movement model, the likelihood of an observed step
from xt to xt+1 is a function of the resource selection
coefficients and of the other parameters of the sam-
pler, given by the transition kernel p(xt+1|xt).

3) Use maximum likelihood estimation, or other likeli-
hood-based methods, to estimate the resource selec-
tion and movement parameters.

In this framework, the choice of the MCMC algo-
rithm determines the movement model. For example,
with a Metropolis-Hastings model, different proposal
distributions might capture different features of the ani-
mal’s movement. The parameters of the algorithm,
which are usually regarded as tuning parameters, are
here parameters of the movement process. For example,
the variance of the proposal distribution can be thought
of as a measure of the animal’s speed. It is important to
make a distinction between these parameters of move-
ment, and the parameters of the target distribution (i.e.,
the resource selection parameters). Two different sam-
plers might have the same target distribution, but the
rate at which it is approached by the MCMC samples
will depend on the choice of algorithm. Indeed, part of
the success of MCMC in its Bayesian context is the flexi-
bility in choosing the transition kernel for a given target
distribution. The suitability of an MCMC sampler is
usually assessed by the speed of convergence of the simu-
lated samples to the target distribution. However, for
our application, we want an algorithm corresponding to
a realistic model of movement, in addition to having the
correct target distribution. It could happen that an
MCMC algorithm that describes animal movement very
realistically has a slow rate of convergence to the target
distribution. This would merely mean that the animal,
when observed at the time step of the observations, does

not sample efficiently from its utilization distribution. In
such a case, inference about the utilization distribution
would be limited regardless of the modelling framework
that is used.
In rejection-based MCMC algorithms such as Metro-

polis-Hastings, a relocation is proposed at each time step,
and is accepted with some probability. If the proposed
step is not accepted, the process remains in the same
location. Although it can happen that a tagged animal is
immobile over several time steps (in particular if tempo-
ral resolution is high), many telemetry data sets do not
include such “rejections.” Classic MCMC algorithms
might thus seem to be an unnatural choice to analyze
those data, because the animal will almost always change
position in the process of sampling a new candidate loca-
tion. To circumvent this problem, we design a new rejec-
tion-free MCMC algorithm in The local Gibbs sampler.

THE LOCAL GIBBS SAMPLER

Standard Metropolis-Hastings samplers require a
rejection step to ensure convergence to the target distri-
bution. Viewing this as a movement model would imply
the unlikely scenario of a return by the animal to its pre-
vious position, after having tested and rejected a reloca-
tion. Instead, it is more natural to think about tracking
data as the outcome of a rejection-free sampler. Several
such algorithms are possible; see Discussion. Here, we
describe one such algorithm, which we call the local
Gibbs sampler.
In the classic Gibbs sampler, each “step” involves

updating just one of the n parameters, xj say, while keep-
ing x1,. . ., xj�1, xj+1, . . ., xn fixed; the values of j can be
chosen systematically or randomly. Thus, each step is a
move within a one-dimensional subspace of the parame-
ter space, rather than over the whole space. It is used
when the target distribution over each such one-dimen-
sional space (the so-called “full conditional distribu-
tion”) is mathematically tractable, so that when it is used
as the transition kernel for that step, the acceptance
probability is guaranteed to be 1.
The local Gibbs sampler uses the same idea of sam-

pling from a restricted part of the target distribution: at
each iteration t, the updated parameter xt+1 is sampled
directly from the target distribution, truncated to some
neighborhood of xt. The way in which this neighborhood
is selected is crucial to ensuring that the algorithm sam-
ples from the required target distribution in the long run.
In explaining the details of the algorithm, we focus on

the case of n = 2 dimensions, by far the most important
case for ecological applications, though the algorithm
works for any n with straightforward changes. For any
point x, and r > 0, we define DrðxÞ to be the disc of cen-
tre x and radius r.
The local Gibbs sampler for p is given by the following

steps, and the notation is illustrated in Fig. 1. The track
starts from a location x1, and moves to locations xt+1
over iterations t = 1,2,. . ..
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1) On iteration t, sample a point c uniformly from the
disc DrðxtÞ.

2) Define ~p the truncated distribution

~pðyÞ ¼ pðyÞ=CrðcÞ if y 2 DrðcÞ,
0 elsewhere,

�

where CrðcÞ ¼ R
z2DrðcÞ pðzÞdz is a normalizing constant.

3) Sample the next location xt+1 from DrðcÞ according
to the constrained pdf ~p.

The local Gibbs sampler has one parameter: the
radius r > 0 of the relocation disc. Here, for simplicity,
we only consider the case where r is fixed, but the algo-
rithm would still work if r were generated independently
at each iteration from a probability distribution.
Using the analogy introduced in A model of step selec-

tion using a movement-MCMC analogy between animal
movement and MCMC sampling, the local Gibbs algo-
rithm can be used as the basis for a model of animal
movement and habitat selection, that we will call the
local Gibbs model. It relies on the assumption that an
animal “samples” locations from its utilization distribu-
tion based on the step selection rules described above.
Note that, at each time step, the overall relocation

region of the local Gibbs model is symmetric around the
animal’s current location. The choice of the relocation
disc DrðcÞ, based on the selection of a point c in step 1 of
the algorithm, might seem biologically unrealistic,
because a moving animal would not relocate to a disc
that is shifted at random from its current location. Nev-
ertheless, because c is chosen uniformly from DrðxtÞ, one
should think of the relocation region once c has been
integrated over, i.e., a disc of radius 2r around xt.
In the local Gibbs model, the parameter r determi-

nes the size of the area that is available to the animal

over one time step. As in most step selection analyzes,
the region of availability is a simplistic but useful
model for a combination of the animal’s mobility and
perception.
Taking p to be the normalized RSF (Eq. 2), the local

Gibbs algorithm defines a step selection (movement)
model in which the distribution of the animal’s space
use is guaranteed to be proportional to the RSF. Indeed,
it satisfies the detailed balance condition (Eq. 5), which
can be shown as follows. Given r, we have

pðxÞpðyjxÞ ¼ pðxÞ
Z
c2R2

pðyjcÞpðcjxÞdc:

Given c, y is sampled from DrðcÞ with a density propor-
tional to pðyÞ and, given x, c is sampled uniformly from
DrðxÞ, so

pðyjcÞ ¼ pðyÞ
CrðcÞ Ify2DrðcÞg; and pðcjxÞ ¼ 1

pr2
Ifc2DrðxÞg

where IA is the indicator function for the event A. We
can then write

pðxÞpðyjxÞ ¼ pðxÞ
Z
c2DrðxÞ\DrðyÞ

pðyÞ
pr2CrðcÞ dc

¼ pðxÞpðyÞ
pr2

Z
c2DrðxÞ\DrðyÞ

1
CrðcÞ dc

¼ pðyÞpðxÞ
pr2

Z
c2DrðyÞ\DrðxÞ

1
CrðcÞ dc

¼ pðyÞpðxjyÞ;

as required.
The local Gibbs model is superficially similar to the

availability radius model of Rhodes et al. (2005), first
introduced by Arthur et al. (1996). In that model, at
each time step, the next location xt+1 is sampled from
the RSF truncated and scaled on a disk centered on xt.
That is, in step 1 of the algorithm described above, they
take c = xt. This means that there is no mechanism in
their approach to guarantee that the overall distribution
of the sampled locations is the RSF. Specifically, the two
sides of the detailed balance equation involve different
normalization constants, and so their movement models
do not have the normalized RSF as their equilibrium
distributions. For this reason, the coefficients they esti-
mate will differ from the resource selection coefficients
estimated from a RSF approach.
We can derive the resource-independent movement

kernel /LGðyjxÞ of the local Gibbs model, to describe
the distribution of steps on a flat target distribution. In
the case where r is fixed

/LGðyjxÞ ¼
1

ðpr2Þ2 AðDrðxÞ \DrðyÞÞ ifky� xk�2r

0 otherwise

�

(6)

r

Dr(c)

Dr(xt)
xt

c

FIG. 1. Notation for the local Gibbs sampler in two dimen-
sions. The point c is sampled uniformly from DrðxtÞ, and the
next location xt+1 is sampled from the resource selection func-
tion (RSF) truncated to DrðcÞ.
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where ky� xk is the distance between x and y, and
AðDrðxÞ \ DrðyÞÞ is the area of the intersection of the
discs of centers x and y, and of radius r. The point c is
such that kc� xk\ r and kc� yk\ r, and so, in the
absence of environmental effects, the relative probability
of a step from x to y is proportional to
AðDrðxÞ \ DrðyÞÞ. By construction, it is impossible to
have a step between two points if the distance between
them is larger than 2r, hence /LGðyjxÞ ¼ 0 when
ky� xk [ 2r. The detail of the derivation is given in
Appendix S1. A graph of the density function /LG is
shown in Fig. 2.
The transition kernel given in Eq. 6 and plotted in

Fig. 2 describes the distribution of steps in the absence
of habitat selection, in the case where the radius parame-
ter r is fixed. A more flexible movement model can be
obtained by taking r to be time varying, and drawn at
each time step from a probability distribution (e.g.,
exponential or gamma distribution, to ensure r > 0).
It is important to note that the transition kernel of the

local Gibbs algorithm cannot be written in the form
given in Eq. 3, i.e., p(y|x) is in general not proportional
to /LGðyjxÞwðcðyÞÞ. For this reason, the local Gibbs
model is not merely a special case of the step selection
model described by Forester et al. (2009).

SIMULATIONS

The local Gibbs algorithm, described in The local
Gibbs sampler, can be used to simulate tracks based on a
known RSF. The truncation of the RSF to the disc DrðcÞ
requires the calculation of the normalizing constant
CrðcÞ. It is not generally possible to derive it analytically,
but Monte Carlo sampling can be used to approximate
it. In practice, to sample from the truncated target distri-
bution ~p, nd points are generated uniformly in DrðcÞ, and
xtþ1 is sampled from those points, with probabilities pro-
portional to their RSF values. Simulation using the local
Gibbs algorithm is illustrated in Fig. 3.
Here, we illustrate the method described in A model of

step selection using a movement-MCMC analogy, with the
local Gibbs sampler. In Local Gibbs simulation, we show

that our algorithm can produce movement tracks on a
known utilization distribution and, in Local Gibbs estima-
tion, we illustrate the use of the local Gibbs movement
model for the estimation of resource selection and move-
ment parameters from simulated data. The R code used
for the simulations is available in the supplementary
material, as Data S1.

Simulated resources

To mimic the type of environmental data of a real case
study, we simulated two covariate distributions c1 and c2
as Gaussian random fields on square cells of size 1,
using the R package gstat (Pebesma 2004). We restricted
the study region to X ¼ ½�15; 15� � ½�15; 15�, to ensure
that the target distribution is integrable. Plots of c1 and
c2 are shown in Fig. 4A,B. The utilization distribution
was defined by

x coordinate

D
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ty

−2r −r 0 r 2r

0

1 πr 2

FIG. 2. Resource-independent transition kernel for the local Gibbs sampler with a fixed radius parameter r. The x-axis shows
the distance from the origin point xt, and the y-axis shows the density of the endpoint xt+1.
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next location xt+1 is sampled from the black dots, with probabil-
ities proportional to their RSF values.
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pðxÞ ¼ expðb1c1ðxÞ þ b2c2ðxÞÞR
z2X expðb1c1ðzÞ þ b2c2ðzÞÞdz

;

with b1 = �1 and b2 = 4 (i.e., avoidance for c1 and pref-
erence for c2). A plot of the RSF is shown in Fig. 4C.

Local Gibbs simulation

In this section, we demonstrate that the local Gibbs
algorithm, described in The local Gibbs sampler, can be
used to sample from a given probability distribution. We
considered the utilization distribution p defined in Simu-
lated resources. To analyze the behavior of the local Gibbs
sampler at different spatial scales, we ran three simula-
tions, with three different values for the radius r of the
movement kernel: r = 0.5, r = 2, and r = 8. The value of r
affects the range of perception of the animal and, indi-
rectly, its speed. For each r, 5 9 105 locations were simu-
lated with the local Gibbs algorithm, starting from the
point x1 = (0,0). (Given the length of the simulated tracks,
the choice of the starting point has only a minor impact
on the overall distribution of sampled locations.)
For comparison, we also illustrate the results of Barnett

and Moorcroft (2008), that the steady-state distribution
of a standard SSF model (p in Eq. 4) differs from the nor-
malized SSF. We sampled a movement track from a step
selection model with uniform sampling, as defined by For-
ester et al. (2009), that we denote SSFunif. We simulated
5 9 105 locations from SSFunif, as follows. We started
from x1 = (0,0). Then, at each time step t = 1,2,. . ., we
generated 100 proposed locations y1, y2,. . ., y100 uniformly
from a disc of radius r = 3 centred on xt. The next loca-
tion xt+1 was sampled from the proposed locations, with
each point yi having a probability to be picked propor-
tional to p(yi). That is, we use p as the (normalized) SSF
to simulate from the uniform sampling model. Here, we
chose r = 3 because it gave rise to approximately the same
mean step length as the local Gibbs sampler with r = 2
(i.e., comparable speed of spatial exploration).
The first 300 steps of each simulated track, and the

density of all simulated points, are shown in Fig. 5. The
density of points simulated from the local Gibbs sampler
(right column, first three plots) displays the same

patterns as the true RSF (Fig. 4C). By contrast, the den-
sity of the locations obtained in the SSFunif simulation
(right column, last plot) fails to capture many features of
the landscape, as the process spends a disproportionate
amount of time in areas of high values of w(x).
To compare the empirical distribution of simulated

points to the distribution p used in the simulations, we
plotted the (normalized) count of locations simulated in
each grid cell against the corresponding value of p. The
comparison is presented in Fig. 6. Alignment with the
identity line indicates similarity between the empirical dis-
tribution and p. For the three local Gibbs simulations, the
points align well with the identity line, in particular in the
experiments with r = 2 and r = 8, in which the speed of
spatial exploration is higher than when r = 0.5. This con-
firms that the local Gibbs algorithm can sample movement
trajectories on a given target distribution. It defines a
movement model for which the long-term distribution of
locations is known. However, the plot for the SSFunif simu-
lation reveals a clearly nonlinear relationship between the
density of simulated points and the normalized SSF. This
confirms the results of Barnett and Moorcroft (2008),
Avgar et al. (2016), and Signer et al. (2017): the coeffi-
cients of a SSF do not measure the underlying steady-state
distribution. (Note that SSF models may be used to esti-
mate space use, with simulations, as in Avgar et al. [2016],
but the parameters of the SSF only measure local habitat
selection.) We illustrated how the local Gibbs sampler can
generate movement tracks that converge in distribution to
the underlying RSF.

Local Gibbs estimation

The approach introduced in A model of step selection
using a movement-MCMC analogy shows great promise
for the estimation of movement and resource selection
parameters from observed animal movement data. Con-
sidering the MCMC algorithm as a movement model, it
is in principle straightforward to express the likelihood
of observed steps, given the parameters of the sampler
(e.g., radius r in the local Gibbs model) and of the RSF
(b1, b2, . . .). In cases where the transition kernel of the
chosen sampler, p(xt+1|xt), can be calculated, the
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likelihood of T observations (x1, x2, . . ., xT) is derived as
L ¼ QT�1

t¼1 pðxtþ1jxtÞ.
In this section, we wish to demonstrate its practical

application, with the example of the local Gibbs model.
We simulated a track of T = 3,000 locations from the local
Gibbs sampler (described by the algorithm in The local
Gibbs sampler), with r = 2, on the RSF defined in Simu-
lated resources. Then, similarly to a real analysis, we used
the local Gibbs model to recover estimates of the RSF
(i.e., of b1 and b2) and of r, from the (simulated) movement
data and covariate rasters.
The likelihood of an observed track under the local

Gibbs model is obtained as the product of the likeli-
hoods of the individual steps

L ¼
YT�1

t¼1

pðxtþ1jxtÞ

¼
YT�1

t¼1

1
pr2

Z
c2DrðxtÞ\Drðxtþ1Þ

pðxtþ1ÞR
z2DrðcÞ pðzÞdz

dc

(7)

The details of the derivation are given in
Appendix S1. This likelihood is a function of the move-
ment parameter r, and of the coefficients bi of the RSF
(which appear in the expression of p). Maximum likeli-
hood techniques can then be used to obtain parameter
estimates. We implemented the likelihood function of
Eq. 7, and used the numerical optimizer nlminb in R to
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get maximum likelihood estimates of b1, b2, and r. The
results are summarized in Table 1.
Fig. 7 shows a plot of the estimated utilization value

of each grid cell against its true utilization value. If we
denote ŵi the estimated value of the RSF in cell i, its
estimated utilization value p̂i is derived as

p̂i ¼ ŵiP
j2cells ŵj

:

In Fig. 7, the alignment of the dots with the identity
line indicates that the estimated utilization distribution
captures the shape of the true utilization distribution
well. In addition, the parameter r of the movement pro-
cess was successfully estimated (Table 1).
This example demonstrates how the method can be used

to estimate resource selection and movement parameters
from tracking data. In real applications, unlike with simu-
lated data, the true form of the movement process would
not be known, and additional work would be needed to
assess the fit. We discuss this further in Discussion.

DISCUSSION

We have presented a versatile class of models of ani-
mal movement, for which the steady-state distribution of
locations is proportional to the same RSF that influ-
ences short-term movement. Our approach reconciles
the resource selection and step selection approaches to
the analysis of space use data. We anticipate that the res-
olution of this discrepancy between RSF and SSF mod-
els will have important implications for the study of
individual movement and, also, species distributions.
The central point of this paper is the idea that multiscale
modelling of a dynamic system can be achieved using
stochastic processes for which both the short-term tran-
sition density and the long-term stationary distribution
are explicitly formulated (in particular, here, MCMC
samplers). Although we have presented this method for
the analysis of animal movement and resource selection,
we expect that the underlying idea could have other eco-
logical applications. For example, this problem is remi-
niscent of population genetics, where both the
microscopic heritability laws and the macroscopic allele
frequencies are of interest.
At the level of the individual, we have recognised a ten-

dency in the current literature to embed increasingly real-
istic movement models in SSF analyzes. We hazard that
the subtext of this trend is the intuitive notion that the
habitat selection coefficients of SSF models that stay faith-
ful to movement biology, will automatically correspond to
the estimates of RSF models. As we have argued and
demonstrated here, this is not necessarily the case, because
SSF coefficients measure local habitat selection rather
than long-term space use. Conversely, any given popula-
tion distribution may be achievable by multiple movement
models, just as, in the simplest of movement models, the
same degree of population diffusivity can be achieved by
an infinity of different movement rules, simply by trading
off individual speed against path sinuosity. Although
meticulous realism in movement turns out not to be a
strict requirement for achieving agreement between the
microscopic and macroscopic models of space use, our
paper demonstrates how SSFs (through the application of
statistical estimation and model selection) might in the
future be used to learn about movement biology.
This manuscript serves as a proof of concept for the

approach, but stops short of describing a complete work-
flow for the analysis of animal location data. In Local
Gibbs estimation, using simulated data, we explained how
the local Gibbs model can be used to estimate resource
selection and movement parameters from a movement
track. In a real data analysis, it would be necessary to
investigate the goodness of fit. One possibility would be
to simulate many locations from the fitted local Gibbs
sampler, and compare the simulated and observed data in
terms of some metrics of movement (e.g., distribution of
step lengths). Discrepancies between features of the true
and simulated data sets would point to possible model
misspecifications. In addition, different models of

TABLE 1. Maximum likelihood estimates and Hessian-based
95% confidence intervals for the parameters of the local
Gibbs model, obtained for one simulated track.

Parameter True value Estimate 95% confidence interval

b1 �1 �0.86 [�1.46,�0.26]
b2 4 4.15 [3.53,4.77]
r 2 2 [1.81,2.20]

Note: b1 and b2 are the resource selection parameters, and r
is the radius parameter of the local Gibbs algorithm.
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individual movement, described by different MCMC
algorithms but all guaranteed to scale up to the same
long-term distribution, may be allowed to compete in a
setting of statistical model selection, pointing to parsimo-
nious explanations of the movement observations. In the
estimation framework introduced in Local Gibbs estima-
tion, likelihood-based model selection criteria, such as the
Akaike information criterion (AIC), could be used to
compare several candidate models. The likelihood derived
from an MCMC movement model accounts for the serial
correlation found in telemetry data. As such, it is a more
defensible measure of likelihood than what might be
obtained with other RSF approaches (Aarts et al. 2008,
Fieberg et al. 2010).
This modeling framework combines some of the

advantages of process-based movement models and of
distribution-based resource selection models. In addition
to its advantages for individual-level inference, the pro-
spect of reconciliation between RSF and SSF
approaches will also benefit population-level results. In
particular, the problem of formally combining the two
major sources of space-use information, telemetry and
transect data, has, in our experience, resisted several
analytical attempts. The approach proposed here offers
a solution to this problem of joint inference. For exam-
ple, the steady-state distribution implied by an SSF fit-
ted to telemetry data would be required to coincide with
the utilization distribution generated by fitting a RSF to
independently obtained transect data. As described in
Local Gibbs estimation, the likelihood of a track (x1, . . .,
xT) under an MCMC movement model with transition
kernel p(xt+1|xt) is Lmov ¼ QT�1

t¼1 pðxtþ1jxtÞ and, in the
same framework, the likelihood Lind of isolated survey
locations {y1, . . ., yn} can be obtained using standard
RSF methods (e.g., logistic regression or Poisson GLM).
The two types of data can be combined by multiplying
Lmov and Lind, thus enhancing the effective sample size
of the resulting estimates. Incorporating additional con-
straints, for example if the survey is confined to a subre-
gion, is also straightforward.
Because it builds on the very wide and flexible class of

MCMC samplers, various other movement rules could
be considered. The slice sampler (Neal 2003) is an exist-
ing rejection-free sampler that shares some mathematical
details with our local Gibbs sampler, and a “local” ver-
sion may give some additional flexibility in movement
modeling. Models of animal movement often incorpo-
rate directional persistence, such as the discrete-time and
continuous-time correlated random walks (e.g., Jonsen
et al. 2005, Johnson et al. 2008, respectively). Within the
framework we described, this feature of movement could
be modeled using non-reversible MCMC samplers,
which often display this type of autocorrelation (e.g.,
Michel and S�en�ecal 2017). Such algorithms could be
used for more realistic movement models.
Although we have focused on the case where the radius

parameter r of the local Gibbs algorithm is taken to be
constant, allowing r to be stochastic is straightforward, as

mentioned above. The flexibility of the model depends in
part on the choice of this distribution. More realistic fea-
tures of animal movement, such as different distributions
of step lengths, could thus be incorporated in the local
Gibbs sampler by choosing a flexible parametric distribu-
tion for r (e.g., a gamma or Weibull distribution). A further
refinement would be to combine this approach with the
state-space modeling framework (Patterson et al. 2008),
with the state of the process representing true location,
thus incorporating measurement error on locations and
giving some robustness against errors of measurement,
classification, or registration in the habitat map.
The present paper therefore opens the way for future

research in three vital directions: the exploration of the
wealth of biological models that can be implemented
with our MCMC analogues, the development of inferen-
tial methods for the integrated analysis of different data
types, and the investigation into how population-level
space use arises from individual rules of movement.
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