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1   | INTRODUC TION

The collection of large high-resolution animal tracking datasets has 
motivated the development of a wide range of statistical methods 
(Hooten, Johnson, McClintock, & Morales, 2017; Patterson et al., 
2017). For the analysis of animal movement, an important con-
ceptual modelling choice is the time formulation, i.e. the choice 
between discrete-time and continuous-time models (McClintock, 
Johnson, Hooten, Ver Hoef, & Morales, 2014). Although animals 
move in continuous time, their location may only be observed at 
discrete intervals (e.g. every minute or every hour). Dicrete-time 

approaches are based on the assumption that the underlying move-
ment process can be appropriately modelled at the time scale of 
the observations. Most often, movement is described by the ‘step 
lengths’ (distances between successive locations) and ‘turning an-
gles’ (angles between successive directions), derived from the loca-
tion data (Jonsen, Flemming, & Myers, 2005; Morales, Haydon, Frair, 
Holsinger, & Fryxell, 2004). However, the distributions of these met-
rics of movement strongly depend on the sampling rate, such that 
the resulting inference is tied to a specific temporal scale (Codling 
& Hill, 2005; Schlägel & Lewis, 2016). One of the consequences 
is that discrete-time methods require locations to be collected at 
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Abstract
1.  Continuous-time models have been developed to capture features of animal 

movement across temporal scales. In particular, one popular model is the contin-
uous-time correlated random walk, in which the velocity of an animal is formu-
lated as an Ornstein–Uhlenbeck process, to capture the autocorrelation in the 
speed and direction of its movement. In telemetry analyses, discrete-time state-
switching models (such as hidden Markov models) have been increasingly popular 
to identify behavioural phases from animal tracking data.

2.  We propose a multistate formulation of the continuous-time correlated random 
walk, with an underlying Markov process used as a proxy for the animal’s behav-
ioural state process. We present a Markov chain Monte Carlo algorithm to carry 
out Bayesian inference for this multistate continuous-time model.

3.  Posterior samples of the hidden state sequence, of the state transition rates, and 
of the state-dependent movement parameters can be obtained. We investigate 
the performance of the method in a simulation study, and we illustrate its use in a 
case study of grey seal (Halichoerus grypus) tracking data.

4.  The method we present makes use of the state-space model formulation of the 
continuous-time correlated random walk, and can accommodate irregular sam-
pling frequency and measurement error. It will facilitate the use of continuous-
time models to estimate movement characteristics and infer behavioural states 
from animal telemetry data.
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regular time intervals through the period of the study. Many telemetry  
datasets are collected at irregular time intervals, for example with 
marine mammals which may only be observed when they surface. 
To use a discrete-time model in such cases, it is then necessary to 
interpolate the data points on a regular time grid, introducing ap-
proximation uncertainty.

On the other hand, continuous-time models consider that te-
lemetry observations arise from a continuous movement process. 
As such, they can naturally accommodate different temporal scales, 
and irregular sampling rates (Patterson et al., 2017). Various ap-
proaches have been used to model animal movement in continu-
ous time, most of them based on diffusion processes. These include 
Ornstein–Uhlenbeck processes (Blackwell, 1997, 2003; Dunn & 
Gipson, 1977), Brownian bridges (Horne, Garton, Krone, & Lewis, 
2007), and potential functions (Preisler, Ager, & Wisdom, 2013). A 
very popular model is the continuous-time correlated random walk 
(CTCRW) introduced by Johnson, London, Lea, and Durban (2008), 
in which the velocity of the animal is formulated as an Ornstein–
Uhlenbeck process. Through the velocity, this model incorporates 
autocorrelation into both the speed and the direction of the move-
ment, similarly to discrete-time correlated random walks based on 
step lengths and turning angles. Johnson et al. (2008) formulated 
the CTCRW as a state-space model, making fast inference possible 
through the Kalman filter, and made it available in the r package 
crawl (Johnson & London, 2018). Fleming et al. (2017) extended 
this implementation to a wider family of diffusion processes, in-
cluding their ‘OUF’ model of correlated movement around a centre 
of attraction.

Random walks have been used as ‘building blocks’ for more com-
plex, multistate, models. These state-switching models describe 
animal movements as the outcome of several distinct behaviours, 
e.g. ‘foraging’, ‘resting’, ‘exploring’, based on the notion that the be-
havioural states of the animal differ noticeably in terms of some met-
rics of the movement, e.g. speed or sinuosity (Morales et al., 2004). 
The advantage of multistate time series models over simpler cluster-
ing methods is that they account for the temporal autocorrelation 
in the movement behaviours (Edelhoff, Signer, & Balkenhol, 2016). 
Although this idea has received a lot of attention for discrete-time 
models, with the growing popularity of hidden Markov models 
(Langrock et al., 2012; Patterson, Basson, Bravington, & Gunn, 
2009), it has been underutilised in continuous-time approaches. 
Blackwell (1997) introduced a multistate movement model, where 
the location of the animal is modelled with an Ornstein–Uhlenbeck 
process. That model does not directly capture the movement per-
sistence in speed and direction, which makes its application lim-
ited for high-frequency tracking data. More recently, Parton and 
Blackwell (2017) described a multistate approach in which the speed 
and the bearing of the animal are modelled with diffusion processes, 
analogously to discrete-time models based on step lengths and turn-
ing angles. However, their method requires computationally costly 
numerical approximation to reconstruct the movement path at a fine 
time scale, a disadvantage in dealing with large tracking datasets. 
McClintock et al. (2014) presented a multistate analysis based on 

the CTCRW, but they constrained the state process to be constant 
over each time interval between two observations. Therefore, they 
do not carry out exact inference from the continuous-time model. 
Gurarie et al. (2017) recently reviewed the use of the CTCRW model 
for the analysis of animal tracking data. They proposed a method 
based on change point analysis to segment movement tracks into be-
havioural phases. Although they can be a useful tool of classification, 
change point approaches do not provide a mechanistic understand-
ing of the behavioural state process.

Alternatively, to circumvent the limitations of discrete-time mod-
els, McClintock (2017) suggested a two-stage approach based on 
multiple imputation methods. A one-state continuous-time model 
(such as the CTCRW) is fitted to the data, and a large number m of 
possible realisations of the movement process are simulated from 
the model on a regular time grid. Then, a hidden Markov model is fit-
ted to each realisation, to investigate the state-switching dynamics. 
The m sets of estimates are pooled, such that the resulting model 
takes into account the uncertainty in the locations. Note that, since 
the realisations are generated without taking into account the pos-
sible behaviours, this is not fully equivalent to fitting a multistate 
CTCRW model. In particular, if the one-state model fails to capture 
the behavioural heterogeneity in the movement, the simulated real-
isations may not correctly reflect the uncertainty in the continuous 
trajectory.

Here, we extend the framework of Johnson et al. (2008) to incor-
porate behavioural states directly into the CTCRW framework, with 
an underlying continuous-time Markov process. The state-switching 
CTCRW offers a rigorous approach to model behavioural heteroge-
neity and movement persistence, two common features in modern 
telemetry data collected at high frequency over long periods of time. 
It can be used with irregularly sampled movement data without the 
need to interpolate the locations, and can incorporate measurement 
error. We present the model formulation and describe a Bayesian 
estimation method to infer hidden states and movement parameters 
in this framework. We investigate the performance of the method in 
a simulation study, and demonstrate that it can be used to recover 
estimates of the states and movement parameters, from irregular 
location data. We analyse a trajectory of grey seal (Halichoerus gry-
pus) with a 2-state CTCRW model, and obtain posterior samples of 
the state-dependent movement parameters and of the unobserved 
state sequence. We explain how the movement parameters differ in 
the two states, and how they can be interpreted as measures of the 
animal’s speed and movement persistence.

2   | MODEL FORMUL ATION

2.1  | Continuous-time correlated random walk

The continuous-time correlated random walk (CTCRW) was intro-
duced as a model of animal movement by Johnson et al. (2008). 
The underlying stochastic process was originally developed by 
Uhlenbeck and Ornstein (1930) to describe the movement of a par-
ticle under friction.
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Denote zt = (xt, yt)
⊤ the location of the animal at time t, and 

vt = (vx
t
, v

y

t
)⊤ its velocity, linked by the equation 

In the CTCRW model, the velocity of the animal is modelled by 
an Ornstein–Uhlenbeck process, defined as the solution of the sto-
chastic differential equation 

where wt denotes a Wiener process, �∈ℝ
2 is the mean velocity, 

β > 0 measures the reversion of the velocity to its mean, and σ > 0 
measures the spread of the velocity around its mean. In practice, 
the mean velocity parameter γ is often taken to be zero, corre-
sponding to the case where there is no systematic drift in the 
animal’s movement (although see Johnson et al., 2008, for an ex-
ample of analysis with drift). Here, for simplicity, we consider that 
β and σ are scalar parameters, corresponding to the isotropic case, 
but they could be taken as matrices for a more general formulation 
(Blackwell, 2003; Gurarie et al., 2017). We will sometimes refer 
to the location process zt as an integrated Ornstein–Uhlenbeck 
process, to indicate that its derivative (with respect to time) is an 
Ornstein–Uhlenbeck process.

This formulation is very convenient because it is possible to 
derive the transition densities of the velocity process vt and of the 
position process zt analytically. In the following, we assume γ = 0. 
Using Itô calculus, it can be shown that, under Equations 1 and 2, 
we have 

and 

for any time interval δ > 0 and, for either dimension c ∈ {x, y}, 

 

 The steps of the calculation are detailed in Appendix A.
Johnson et al. (2008) developed a method to estimate the move-

ment parameters β and σ from observed telemetry data. The parame-
ters can be linked to the speed and sinuosity of the animal’s movement, 
and therefore used for the biological interpretation of tracking data. 
Indeed, Gurarie et al. (2017) presented an alternative parametrisation of 
the CTCRW, defined with τ = 1/β and � =

√
��∕(2

√
�). In this formu-

lation, the parameter τ > 0 is the time interval over which the autocor-
relation function of the velocity process decreases by a factor e, and it 
is sometimes called the ‘relaxation time’ of the process (Gillespie, 1996). 
Larger values of τ (corresponding to smaller values of β) indicate longer- 
term persistence in the speed and direction of the animal’s movement. 
The autocorrelation function of the velocity process decreases to 0.05 
over a time interval of length 3τ, because e−3 ≈ 0.05. For most practical 

purposes, vt and vt+3� can therefore be regarded as approximately in-
dependent (Johnson et al., 2008). The parameter ν > 0 is the long-term 
mean of the speed of movement of the animal. With this convenient for-
mulation, the model offers a very useful framework to quantify move-
ment characteristics of animals.

2.2  | Multistate model

In this paper, we use the CTCRW as a building block for more com-
plex and realistic movement models. Multistate models of animal 
movement have been developed to account for behavioural het-
erogeneity. In the most common formulation, a (discrete- or con-
tinuous-time) Markov process models switches between discrete 
‘behavioural’ states, on which depend the parameters of the move-
ment process (Blackwell, 1997; Morales et al., 2004). Following this 
idea, we introduce a N-state continuous-time Markov process (st)t≥0, 
characterised by its infinitesimal generator matrix, 

where ∀i∈1, … ,N, �i =
∑

j≠i �ij. At any time t	≥	0,	the	discrete	state	
st takes one of N values {1, …, N}, typically used as proxies for the 
behavioural states of the animal (e.g. ‘foraging’, ‘exploring’). The 
generator matrix is the continuous-time analogue of the transition 
probability matrix used in hidden Markov models, and its entries 
determine the state-switching dynamics. In particular, as a conse-
quence of the Markov property, the dwell times in state i follow 
an exponential distribution with rate �i. We now consider that the 
parameters of the CTCRW model (β and σ in Equation 2) are state-
dependent, so that each behavioural state can be associated with a 
different type of movement. Using the notation introduced in sec-
tion 2.1, the multistate CTCRW model is defined by 

This can be viewed as a higher-dimension continuous-time Markov pro-
cess composed of a continuous component (the location and velocity 
processes) and a discrete component (the discrete state process), as de-
scribed e.g. by Berman (1994). In the following, we develop a method of 
Bayesian inference for the multistate CTCRW model.

3   | BAYESIAN INFERENCE

3.1  | Likelihood evaluation with Kalman filter

We present a method to evaluate the likelihood of the multistate 
CTCRW model, given a reconstruction of the underlying state pro-
cess. Johnson et al. (2008) implemented a Kalman filter to obtain 
the likelihood of movement trajectories in the single-state CTCRW 
model. With only minor changes, it can be extended to evaluate the 
likelihood of the multistate model, conditionally on the behavioural 

 (1)dzt=vtdt.

 (2)dvt=�(�−vt)dt+�dwt,

vt+� =e−��vt+�(�),

zt+� = zt+

(
1−e−��

�

)
vt+�(�),

 (3)�c(�)∼N

[
0,

�2

2�
(1−e

−2��)

]
,

 (4)�c(�)∼N

[
0,

(
�

�

)2 (
�+

1−e−2��

2�
−
2(1−e−��)

�

)]
.

 (5)�=

⎛⎜⎜⎜⎜⎝

−�1 �12 ⋯ �1N

�21 −�2 ⋯ �2N

⋮ ⋮ ⋱ ⋮

�N1 �N2 ⋯ −�N

⎞⎟⎟⎟⎟⎠
,

{
dzt=vtdt,

dvt=−�stvtdt+�stdwt.
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state sequence. The behaviours of the animal are typically not 
known, and will thus need to be imputed. One method of recon-
structing the state sequence is to sample over the state process in a 
MCMC algorithm, which we describe in section 3.2.

We consider a dataset of observed locations, augmented with 
the times of the reconstructed state transitions. The locations as-
sociated with the transitions are generally not observed, and they 
are thus treated as missing data. We denote by {z̃1, … , z̃n} the aug-
mented sequence of locations, possibly observed with measurement 
error, and {t1, … , tn} the associated times. We denote by si the (im-
puted) behavioural state between ti and ti+1.

Following Johnson et al. (2008), the model can be written as a 
state-space model, where the observation process is the animal’s 
observed location (possibly including measurement error), and the 
continuous state process is composed of both the true location and 
the velocity. We denote by �i = (xi, v

x
i
, yi , v

y
i )
⊤ the continuous state 

vector at time ti, Δi = ti+1 − ti the time intervals, and �i = �(Δi) and 
�i = � (Δi) the stochastic terms of the transition densities for the lo-
cation and the velocity, respectively (Equations 3 and 4, substituting 
�si for β and �si for σ).

Both si and �i are referred to as ‘state’, in state-switching models 
and state-space models, respectively. Here, we combine both and, 
to avoid confusion, we will refer to �i as the ‘continuous’ state of 
the process (as opposed to the ‘discrete’ behavioural state si). The 
observation equation of the CTCRW is 

where Hi is the 2 × 2 measurement error covariance matrix, and 

 That is, the observed location z̃i is the sum of the true location 
zi = (xi, yi) and an error term �i. Using block matrix notation, the con-
tinuous state equation is 

where 

 The variances are given in Equation 3 and 4. The derivation of 
the covariance is given in Appendix A, and yields 

 Under this state-space model formulation, the Kalman filter 
can be used to obtain the log-likelihood of observed locations 
{z̃1, z̃2, … , z̃n}. Although it is not needed to fit the model, we can 
also implement the so-called Kalman smoother algorithm. The 
Kalman smoother provides an estimate �̂i of the continuous state 
at each time step, as well as the covariance matrix Σ̂i of the esti-
mate, conditional on all observations (Johnson et al., 2008). As in 
Johnson et al. (2008), the Kalman filter is here used to integrate 

over both measurement error and unobserved velocities simulta-
neously. Appendix B gives the Kalman filter and smoother equa-
tions for the model, and the expression of the log-likelihood. For 
more details on state-space models and the Kalman filter, see e.g. 
Durbin and Koopman (2012).

3.2  | MCMC algorithm

We describe a method to infer the parameters of the multistate 
CTCRW model introduced in Section 2.2. In Section 3.1, we ex-
plained how the Kalman filter can be used to compute the likeli-
hood of the model, conditionally on the behavioural state sequence. 
However, in most applications, the behaviours of the animal are not 
observed. We propose to estimate the unobserved states by sam-
pling over all possible sequences in a Markov chain Monte Carlo 
(MCMC) algorithm, following the Metropolis-within-Gibbs approach 
introduced by Blackwell (2003). It relies on the successive updates of 
the three components of the model: the reconstructed behavioural 
state process, the movement parameters, and the transition rates.

We denote by p(z̃|�,) the likelihood of a sequence of observed 
locations z̃, given the movement parameters θ and the reconstructed 
state sequence , as obtained from the Kalman filter presented in 
section 3.1. We denote by Λ the generator matrix of the behaviour 
process, as defined in Equation 5. We initialise the state sequence 
to  (0), the movement parameters to �(0), and the generator matrix 
to �(0). Then, for K iterations (k = 1, …, K), we run the three following 
steps alternately, to sample  (k), �(k), and �(k).

3.2.1  | Update of the behavioural state process

The evaluation of the likelihood of the model, described in section 3.1, 
is conditional on the sequence of underlying states. In practice, the 
states are generally not observed, such that we need to impute them. 
The sequence of states  is composed of the times of the state transi-
tions, and the values of the states. At each iteration, an updated state 
sequence ∗ is proposed as follows. We choose an interval [ta, tb], 
where a and b are two integers such that t1 ≤ ta ≤ tb ≤ tn. We simulate 
the state process st from ta to tb, conditional on sta and stb, e.g. using the 
endpoint-conditioned continuous-time Markov process simulation 
methods from Hobolth and Stone (2009). The proposed sequence 
of states ∗ remains identical to  (k−1) outside [ta, tb]. The acceptance 
ratio for ∗ is 

The proposed state process reconstruction is accepted with prob-
ability r. The length of the interval [ta, tb] over which the state se-
quence is updated is a tuning parameter of the sampler, and updates 
over longer intervals are generally less likely to be accepted. Note 
that the state sequence is generated from a continuous-time Markov 
process, and transitions can therefore occur at any point in (continu-
ous) time. In particular, they are not constrained to happen at the 
times of the observations.

z̃i=Z�i+�i, �i∼N(0,Hi),

Z=

(
1 0 0 0

0 0 1 0

)
.

�i+1=

(
Ti 0

0 Ti

)
�i+�i, �i∼N

[
0,

(
Qi 0

0 Qi

)]

Ti=

(
1 (1−e−�siΔi )∕�si
0 e−�siΔi

)
, Qi=

(
Var(�ci) Cov(�ci,�ci)

Cov(�ci,�ci) Var(�ci)

)
.

Cov(�ci,�ci)=
�2
si

2�2
si

(
1−2e−�siΔi +e−2�siΔi

)
. r=min

{
1,

p(z̃|�(k−1),∗)

p(z̃|�(k−1), (k−1))

}
.
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3.2.2  | Update of the movement parameters

Denote θ the vector of parameters of the movement process, i.e. 
� = (�1, … , �N, �1, … , �N) for a N-state model. We use a Metropolis-
Hastings step to update the movement parameters. At iteration k, 
we propose new movement parameters �∗, from a proposal density 
q(�∗|�(k−1)), and the acceptance ratio is 

where p(θ) denotes the prior distribution on the movement pa-
rameters θ. The parameters are updated to �∗ with probability 
r. Note that, if the proposal distribution is symmetric such that 
∀�1,�2,q(�1|�2) = q(�2|�1), then r simplifies to 

 In practice, a standard choice is to use a multivariate normal pro-
posal distribution on the working scale of the parameters (in this 
case, on the log scale). Its variance can be tuned to obtain different 
acceptance rates, and covariance structure can be added to explore 
the parameter space more efficiently.

3.2.3  | Update of the transition rates

Following Blackwell (2003), using conjugate priors, the transition 
rates can be directly sampled from their posterior distribution, 
which is known conditionally on the reconstructed state sequence 
 (k). We find it convenient to parametrise the generator matrix as 

where 𝜆i > 0 is the rate of transition out of state i, and the pij∈ [0, 1] 
are the transition probabilities out of state i. For each state i, they 
satisfy 

∑
j pij = 1. The transition rates and the transition probabilities 

can be sampled separately.
For each i ∈ {1, …, N}, we denote ni the number of time intervals 

spent in state i, and (d(1)i , d
(2)
i , … , d

(ni)
i ) their lengths. These dwell times 

are exponentially distributed with rate �i. The conjugate prior of the 
exponential distribution is the gamma distribution such that, with 
the prior 

the transition rates are sampled from the posterior distribution 

For i ∈ {1, …, N} and j ∈ {1, …, N} such that i	≠	j, we denote nij the 
number of transitions from state i to state j, and ni =

∑
j nij the num-

ber of transitions out of state i. Then, 

The conjugate prior of the multinomial distribution is the 
Dirichlet distribution such that, with the prior 

the posterior distribution of the transition probabilities is 

where pi = (pi1, pi2, … , piN) is the vector of transition probabilities 
out of state i.

4   | MOTIVATION

The method described in Sections 2 and 3 is widely applicable to 
many types of telemetry data. The flexible formulation of the state-
switching CTCRW model can accommodate data with the following 
features: (a) movement persistence, (b) behavioural heterogeneity, 
(b) irregular time intervals, and (d) measurement error.

High-resolution movement data often display strong movement 
persistence, i.e. autocorrelation in the speed and direction of move-
ment. The recent development of discrete- and continuous-time 
correlated random walks arises from the need to account for this 
autocorrelation (Johnson et al., 2008; Jonsen et al., 2005; Morales 
et al., 2004). In the CTCRW model, this persistence is modelled by an 
autocorrelated velocity process. In an alternative continuous-time 
formulation, proposed by Dunn and Gipson (1977) and Blackwell 
(1997), the location of an animal—rather than its velocity—is mod-
elled with an Ornstein–Uhlenbeck process. That model does not 
describe smooth movement trajectories, and it is therefore less 
applicable to modern tracking data. The more recent approach of 
Parton and Blackwell (2017) addresses this persistence, but at sub-
stantial computational cost. The collection of high-resolution telem-
etry data will keep increasing in coming years, and rapid fitting of 
models of persistent movement will be compelling for the analysis of 
data from many taxa.

State-switching models provide a useful framework to account 
for behavioural heterogeneity in animal movement (Blackwell, 1997; 
Morales et al., 2004). Movement tracks are routinely collected over 
periods of several weeks or several months. Over such long periods 
of time, an animal may display different types of movement, which 
we capture with the underlying ‘behavioural’ state process. The 
combination of movement persistence and behavioural states in the 
state-switching CTCRW model allows for a wide range of realistic 
movement patterns.

It is common for tracking data to be irregular in time. It can be 
accidental, for example for marine mammals which can only be mon-
itored when they surface, or it can be by design, for example if the 
sampling frequency depends on the level of activity of the animal 
(Brown et al., 2012). Most currently-used movement models are for-
mulated in discrete time, and they cannot be used to analyse irreg-
ular data, because their parameters are defined for a fixed (regular) 
time scale. Continuous-time models, such as the state-switching 

r=min

{
1,

p(z̃|�∗, (k))p(�∗)q(�(k−1)|�∗)

p(z̃|�(k−1), (k))p(�(k−1))q(�∗|�(k−1))
}

,

r=min

{
1,

p(z̃|�∗, (k))p(�∗)

p(z̃|�(k−1), (k))p(�(k−1))

}
.

�=

⎛⎜⎜⎜⎜⎝

−�1 �1p12 ⋯ �1p1N

�2p21 −�2 ⋯ �2p2N

⋮ ⋮ ⋱ ⋮

�NpN1 �NpN2 ⋯ −�N

⎞⎟⎟⎟⎟⎠

�i∼gamma(�1,�2),

�
(k)
i | (k)∼gamma

(
�1+ni, �2+

ni∑
j=1

d
(j)
i

)
.

ni1, ni2, … ,niN∼multinom(ni, pi1, pi2, … , piN).

pi∼Dir(�i1, �i2, … ,�iN),

p
(k)
i | (k)∼Dir(�i1+ni1, �i2+ni2, … ,�iN+niN).
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CTCRW, can deal with location data collected irregularly, and they 
can also be used to compare studies based on different sampling in-
tervals. We illustrate this important difference between the scaling 
properties of discrete-time and continuous-time models using simu-
lations in Section 5.2.

The presence of measurement error in telemetry data has 
been an important issue, in particular for radio-tracking and Argos 
devices (e.g. Hays, Akesson, Godley, Lusch, & Santidrian, 2001; 
Springer, 1979). Many studies use a two-stage approach, in which 
the track is first filtered to estimate the true locations, and the fil-
tered track is then analysed (e.g. to estimate behavioural states, or 
habitat  selection). In two-stage methods, the uncertainty associated 
with the measurement error is generally not propagated to the final 
 results. It is preferable to model the movement process and the 
 observation process jointly in a state-space model framework, like 
the one we described for the state-switching CTCRW model (Jonsen, 
Myers, & Flemming, 2003; Patterson, Thomas, Wilcox, Ovaskainen, 
& Matthiopoulos, 2008). In the method described in this paper, the 
final inferences into the movement and behaviour of an animal in-
clude the uncertainty of measurement error. We illustrate the appli-
cation of the method to noisy observations in a simulation study in 
Appendix C of the supplementary material.

In this paper, we focus on the estimation of the hidden state 
sequence and of movement parameters, for the state-switching 
CTCRW model. However, this modelling framework offers other 
possibilities. In particular, it can be used to predict the location of 
the animal between observations (with associated uncertainty). This 
has been one of the main applications of the single-state CTCRW, 
as implemented in the r package crawl (Johnson & London, 2018), 
to obtain smooth estimates of a trajectory from noisy and irregular 
telemetry data (e.g. Baylis et al., 2015; Robinson et al., 2012; Rode 
et al., 2015). Predictions from the state-switching CTCRW model 

account for behavioural heterogeneity in the movement patterns, 
and are therefore more susceptible to provide realistic location and 
uncertainty estimates. More generally, all functionalities of the sin-
gle-state CTCRW can be implemented in the state-switching case, 
based on the Kalman filter and smoother algorithms presented in 
Section 3.1 (and detailed in Appendix B).

5   | SIMUL ATION STUDY

We used simulations to investigate the performance of the MCMC 
algorithm described in Section 3 to infer the hidden state sequence 
and the movement parameters from irregular movement data, and to 
compare this method to analogous discrete-time approaches.

5.1  | Estimation from irregular data

We simulated 10,000 locations from a 2-state model at a fine time 
scale (every 0.1 time unit), and thinned them by keeping 10% of the 
points at random (i.e. 1,000 irregularly-spaced locations), to emu-
late real movement data. The time intervals in the resulting dataset 
ranged between 0.1 and 8 time units.

The movement parameters and switching rates of the simulated 
process were chosen as 

In state 1, the variance was smaller and the reversion to the 
mean larger, which resulted in slower and more sinuous move-
ment (perhaps analogous to ‘area-restricted search’ behaviour). 
State 2 corresponded to faster and more directed movement 
(analogous to ‘transit’). This can be seen from the time scale of 
autocorrelation τ and mean speed ν for each state, as defined 
in section 2.1. In this simulation, we have (�1, �2) = (1, 3.33) and 
(�1, �2) = (0.89, 4.85), i.e. more persistent and faster movement 
in State 2. The transition rates were chosen such that the pro-
cess would on average stay about 30 time units in a state before 
switching to the other state. The simulated track (after thinning) 
is shown in Figure 1.

We initialised the reconstructed state sequence by classifying 
each observation randomly as being in state 1 or state 2, with proba-
bility 0.5 each. At each iteration, the state process was updated over 
a randomly-selected interval. We used independent normal proposal 
distributions (on the working log scale) to update the movement pa-
rameters. The proposal variances were tuned based on initial test 
runs, to obtain near-optimal acceptance rates. We chose normal 
prior distributions on the working scale for the movement param-
eters, centred on the true values of the parameters, and with large 
variances.

We ran 105 MCMC iterations, which took around 20 min on a 
2GHz i5 CPU, and discarded the first 5 × 104 as burn-in. Figure 2 
shows the posterior probabilities of being in state 2 at the times 

(�1,�2)= (1,0.3), (�1,�2)= (1,3), �=

(
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F I G U R E  1    Track simulated from a 2-state CTCRW model
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of the observations, to compare with the ‘true’ simulated state se-
quence. For each i = 1, …, n, we calculated the posterior probability 
as the proportion of reconstructions of the state process in which xi 
was classified in state 2. (It would have been equivalent to consider 
the posterior probability of being in state 1; the two probabilities 
sum to 1.) We considered that a step was misclassified if the poste-
rior probability of being in the true state was <0.5. The states were 
correctly estimated in the vast majority of time steps, with only 2% 
of misclassified steps. The posterior probability of being in the true 
state was <0.9 for about 4.5% of the locations.

Figure 3 displays posterior samples for the state-dependent 
movement parameters, �1, �2, �1, and �2, as well as the true param-
eter values used in the simulation. The posterior distributions seem 
to appropriately estimate all movement parameters. Although there 
appears to be some possible bias, replications (not shown here) re-
veal that it is only due to randomness, and not consistent across 
simulations.

We were able to recover the values of the state process and of the 
state-dependent movement parameters from a simulated track thinned 
to irregular intervals. This demonstrates the ability of the method to 
work across temporal scales, and to cope with irregular sampling.

In Appendix C of the supplementary material, we repeat this sim-
ulation experiment, after introducing some ‘observation error’ to the 
simulated locations. The movement parameters and state process 
are estimated well in that scenario, although there is some indication 
that large measurement error (compared to the scale of movement) 
leads to larger uncertainty in the estimates, and slower mixing of the 
MCMC algorithm. There, we also show how the Kalman smoother 
can be used to estimate the true location process at a fine time scale, 
from irregular and noisy observations.

5.2  | Comparison to discrete-time model

We simulated two tracks from the state-switching CTCRW model, at 
a time resolution of 0.1, with the same parameters used in the simu-
lations of Section 5.1. We then thinned them to obtain two datasets: 
(a) a track of 1,000 locations, at a regular time resolution of Δ = 0.5, 
and (b) a track of 1,000 locations, at a regular time resolution of 
Δ = 5. Both tracks arise from the same underlying process (the true 
state-switching CTCRW), and they emulate datasets observed at 
different time resolutions. We fitted a discrete-time state-switching 
model, and the state-switching CTCRW model, to the two datasets, 

F I G U R E  2    Posterior probabilities 
of being in state 2 at the times of the 
observations. The true (simulated) states 
are shown by the colours (red: state 1, 
blue: state 2)
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F I G U R E  3    Posterior samples of the 
movement parameters in state 1 (left) and 
in state 2 (right), in the simulation study. 
The black dots are the true values of the 
parameters, used in the simulation. The 
black lines show contours of a kernel 
density estimate of the posterior samples. 
The samples are thinned to every tenth 
value, for visualisation purposes
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to illustrate the differences in their scaling properties. In this experi-
ment, we thinned the tracks at regular time intervals (rather than 
irregularly, at random) because discrete-time models cannot be ap-
plied to irregular location data.

We fitted a 2-state discrete-time hidden Markov model to each 
dataset, using the r package moveHMM v1.6 (Michelot, Langrock, & 
Patterson, 2016). The standard hidden Markov model, described by 
Patterson et al. (2009) and Langrock et al. (2012), is formulated in 
terms of step lengths (distances between successive locations) and 
turning angles (angles between successive locations). We modelled 
the step lengths with gamma distributions, and the turning angles 
with von Mises distributions. There were six estimated movement 
parameters: the step length means (�1,�2), the step length standard 
deviations (s1, s2), and the turning angle concentrations (�1, �2). The 
mean of the distribution of turning angles was fixed to zero, which 
is a standard choice to model movement persistence. See Michelot 
et al. (2016) for more detail about the hidden Markov model formula-
tion implemented in moveHMM. The parameters of the step length 
distribution are related to the speed of movement, and the param-
eters of the turning angle distribution are related to the directional 
persistence. There were two estimated parameters of the state pro-
cess: the transition probabilities �12 and �21, where �ij is the probabil-
ity of a transition from state i to state j over one time interval.

We also fitted the state-switching CTCRW model to each thinned 
dataset separately. Like in the simulation study of Section 5, we ran 
105 MCMC iterations, and discarded the first 5 × 104 as burn-in. We 
estimated four movement parameters: (�1, �2, �1, �2). There were two 

estimated parameters of the state process: the transition rates �1 
and �2, as defined in Equation 5. The parameter estimates for the 
hidden Markov models and for the state-switching CTCRW models 
are given in Table 1.

The parameters of the continuous-time model (state-switch-
ing CTCRW) were very similar in both analyses. Although the two 
thinned datasets have very different sampling intervals (Δ = 0.5 and 
Δ = 5), the parameters of the CTCRW are independent of the time 
intervals of observations.

However, the parameters of the discrete-time model (hidden 
Markov model) were very different in the two analyses. This 
should be expected, because the model is formulated in terms 
of scale-dependent metrics: the step lengths and turning angles. 
The step lengths increase with the time interval of observation, 
and the estimates reflect this. Indeed, the mean and standard 
deviation of the distribution of step lengths were smaller in the 
analysis with Δ = 0.5 than when Δ = 5. It should be noted that 
there is no clear scaling rule for those parameters. In particular, 
the mean step length is generally not 10 times longer over Δ = 5 
than over Δ = 0.5. This highlights a problem that often arises in 
analyses of irregular tracking data with discrete-time models. 
A method that has been proposed to deal with irregular data 
is to derive a ‘movement rate’ for each time step, by dividing 
the step length by the time interval. Then, it is assumed that the 
movement rates do not depend on the time interval, and repre-
sent a measure of the animal’s speed of movement. However, 
we can see from this simulated example that the movement 

TA B L E  1   Parameter estimates in the comparison of hidden Markov models (‘discrete time’) and state-switching CTCRW models 
(‘continuous time’) over two different temporal scales. For the hidden Markov model parameters, maximum likelihood estimates and 95% 
confidence intervals are shown (obtained with the package moveHMM). For the CTCRW parameters, mean posterior estimates and 95% 
credible intervals are shown

Parameter True value

Δ = 0.5 Δ = 5

Estimate 95% CI Estimate 95% CI

Discrete time

Movement parameters �1 — 0.52 (0.48, 0.56) 2.83 (2.66, 3.02)

�2 — 2.60 (2.50, 2.71) 18.95 (17.98, 19.98)

s1 — 0.33 (0.30, 0.37) 1.69 (1.53, 1.87)

s2 — 1.01 (0.94, 1.09) 10.07 (9.27, 10.94)

�1 — 1.38 (1.22, 1.55) 0.21 (0.12, 0.39)

�2 — 7.03 (5.94, 8.32) 0.75 (0.62, 0.90)

Transition probabilities �12 — 0.063 (0.045, 0.089) 0.132 (0.104, 0.167)

�21 — 0.068 (0.048, 0.097) 0.134 (0.104, 0.172)

Continuous time

Movement parameters �1 1 1.12 (0.95, 1.30) 0.93 (0.69, 1.23)

�2 0.3 0.32 (0.25, 0.39) 0.27 (0.23, 0.32)

�1 1 1.04 (0.98, 1.11) 0.95 (0.74, 1.22)

�2 3 3.03 (2.90, 3.17) 2.84 (2.58, 3.14)

Transition rates �1 0.03 0.026 (0.013, 0.045) 0.035 (0.026, 0.044)

�2 0.03 0.034 (0.016, 0.058) 0.033 (0.025, 0.042)
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rates do, in fact, depend on the time intervals of observation. 
Indeed, the mean movement rate can be obtained as the mean 
step length divided by the time interval. In the first dataset, the 
mean movement rates in the two states are 0.52/0.5 = 1.04 and 
2.60/0.5 = 5.2. In the second dataset, the mean movement rates 
are 2.83/5 = 0.57 and 18.95/5 = 3.79. In general, the sparser the 
data, the more the speed of movement is underestimated by this 
method. A similar problem arises when linear interpolation is 
used to obtain locations at regular intervals in time. Linear inter-
polation draws straight lines between observed locations, and 
will therefore tend to underestimate the speed of movement, 
and overestimate the persistence in direction.

The turning angles tend to be less concentrated around 0 as 
the time interval of observation increases, because movement 
persistence is less clearly visible at a coarse time resolution. This 
can be seen in the parameter estimates, as �1 and �2 are much 
larger in the analysis with Δ = 0.5 than in the analysis with Δ = 5. 
However, similarly to the mean step length, it is not clear how 
the concentration parameter scales with the time interval of 
observations.

This dependence on the time scale of observations must be taken 
into account in the interpretation of the parameters of discrete-time 
movement models. For example, it is difficult to interpret the mean 
step length as a measure of the animal’s speed, because its definition 
is tied to the time interval of observation. It will tend to increase 
with the time interval, but generally not linearly (because animals 
do not move in straight lines between observed locations). Crucially, 
the results of different discrete-time analyses cannot be compared 
if the time interval of observation is different, as illustrated in this 
simulation experiment.

The same scale dependence arises for the parameters of the 
state process. The transition probabilities of the hidden Markov 
models are defined over a given (fixed) time interval, and can only 
be interpreted over that time interval. For example, in the first  
dataset, we estimated that the probability of a transition from state 
1 to state 2 was �̂�12 = 0.06. This means that, if the animal is in state 
1, there is a probability 0.06 of switching to state 2 over each time 
step of length Δ = 0.5. On the other hand, the transition rates of 
the continuous-time model are defined independently of any spe-
cific time interval. Regardless of the time interval of observation, the 
estimated transition rate can be interpreted as the ‘mean number of 
transitions per hour’.

The objective of this simulation study is not to compare how well 
the discrete-time and continuous-time models captured the true un-
derlying process, or how well they recovered the true parameter val-
ues. This would be unfair, because the true process used to simulate 
the tracks is the state-switching CTCRW. Nevertheless, we believe 
that the results presented here are useful to illustrate the funda-
mental difference in the formulations of discrete-time and continu-
ous-time models. In particular, a considerable practical advantage of 
continuous-time approaches is that the estimated parameters, and 
therefore the interpretation and inference, do not depend on the 
time interval of observation.

6   | GRE Y SE AL C A SE STUDY

We illustrate the use of the method described in Section 3 for the 
analysis of a grey seal (H. grypus) movement track. We considered 
a trajectory of 2,535 observations, collected in the North Sea be-
tween April and December 2008 (McConnell, 2019), and previously 
described by Russell et al. (2015). The base sampling frequency was 
of one location every 30 min, but many fixes were missed, and the re-
sulting time grid was highly irregular (P0.025 = 27 min, P0.975 = 10 hr). 
Note that the CTCRW model describes movement on a plane, and 
thus requires that the longitude-latitude locations be projected to 
UTM coordinates for the analysis.

We considered a 2-state CTCRW model, with four movement pa-
rameters to estimate: �1, �2, �1, �2. Similarly to the simulation study, 
we initialised the state reconstruction to a random sequence of 1s 
and 2s (with probability 0.5 each). We used independent normal pro-
posal and prior distributions on the working scale of the movement 
parameters. We selected the proposal variances based on test runs, 
and used weakly informative prior distributions. We ran 2 million 
MCMC iterations, discarding the first half as burn-in, which took 
about 14 hr on a 2GHz i5 CPU. We only saved every 100th recon-
structed state sequence, because of memory limitations.

Figure 4 shows a map of the track, coloured by posterior state 
probabilities, and Figure 5 shows posterior samples for the four 
movement parameters (�1, �2, �1, �2). State 2 captured very di-
rected movements, corresponding to periods of transit between 
areas of interest, and state 1 captured more tortuous phases of 
the track. This can be seen in Figure 5: the posterior distribution 
of �1 covers much larger values than that of �2 (posterior means of 
1.73 and 0.06, respectively), indicating stronger reversion to the 
mean in state 1, and thus less movement persistence. There were 
no signs of label switching in the posterior samples; if there were, 
a straightforward solution would be to constrain (�1, �2) and (�1, �2) 
to be ordered (McClintock et al., 2014). We derived effective 

F I G U R E  4    Grey seal track, off the East coast of Great Britain, 
coloured by posterior state probabilities
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sample sizes (ESS) for the posterior samples of the movement 
parameters, with the R package coda (Plummer, Best, Cowles, & 
Vines, 2006). We found ESS(�1) =1,493, ESS(�2) =2,413, ESS(�1) =
3,150 and ESS(�2) =1,234. There was no indication of mixing issues 
in the MCMC algorithm.

We transformed the posterior samples of movement param-
eters to obtain estimates of τ and ν in both states (as defined in 
Section 2.1). In the following, we report posterior mean estimates, 
and histograms of the posterior samples for the transformed pa-
rameters can be found in Appendix D. The posterior means were 
𝜏1 = 0.55 hr and 𝜏2 = 17.21 hr for the time scales of autocorrelation, 
and �̂�1 = 2.63 km/hr and �̂�2 = 2.90 km/hr for the mean speeds. This 
indicates that the two states are very similar in terms of the speed 
of movement, but that the autocorrelation function of the velocity 
drops much faster in state 1 than in state 2.

The posterior samples of the transition rates can be used to de-
rive mean dwell times in each state, and long-term activity budgets. 
The dwell times in state i follow an exponential distribution with rate 
�i (the rate of transition out of state i). The mean dwell time can thus 
be derived as di = 1∕�i. In the grey seal analysis, the posterior means 
for the mean dwell time were d̂1 = 7.5 hr in state 1, and d̂2 = 7.8 hr 
in state 2, indicating similar dwell times in both states. Activity bud-
gets refer to the proportion of time spent by an animal in each of 
its behavioural states (Russell et al., 2015). In a time-homogeneous 
state-switching model, an estimate of the long-term activity budget 

can be calculated as the stationary distribution of the underlying 
Markov process. The stationary distribution of a N-state Markov 
process is the vector � = (�1, … ,�N) which satisfies πΛ = 0, subject 
to the constraint 

∑N

i=1
�i = 1, where Λ is the generator matrix de-

fined in Equation 5. In the 2-state case, solving the equation yields 
�1 = �2∕(�1 + �2) and �2 = �1∕(�1 + �2). The posterior mean esti-
mate for the stationary distribution was (�̂�1, �̂�2) = (0.48, 0.52), i.e. the 
seal will tend to spend roughly the same proportion of time in both 
states, in the long term. Histograms of posterior draws for the dwell 
times and stationary distribution are displayed in Appendix D.

The Kalman filter and smoother recursions given in Appendix 
B can be used to compute estimated velocities at the times of the 
observations. The velocities obtained with the mean posterior 
movement parameters are displayed in Figure 6, and split by poste-
rior state estimates. The strong movement autocorrelation in state 
2 can best be seen in the outer rim of the plot, where the veloc-
ity sometimes persists with little variation over many time steps. 
Interestingly, a cluster of very small velocities (close to zero) were 
also classified in state 2. This is because, as seen in the estimates 
of the movement parameters, the main difference between the two 
states are not in the speed, but in the velocity persistence. State 2 
therefore captures both fast persistent and slow persistent move-
ments of the seal. On the other hand, state 1 captures less persistent 
movement, characterised by a weaker autocorrelation in the veloc-
ity process. The Kalman algorithm can also provide estimates of 

F I G U R E  5    Posterior samples of the 
movement parameters in state 1 (left) 
and in state 2 (right), in the grey seal case 
study. The black lines show contours of a 
kernel density estimate of the posterior 
samples. The samples are thinned to every 
100th value, for visualisation purposes
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F I G U R E  6    Predicted velocities from 
the grey seal example, obtained with the 
mean posterior movement parameter 
estimates, for time steps classified in state 
1 (left) and in state 2 (right). The grey 
segments link consecutive velocities that 
were classified in the same state
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the locations (and possibly velocities) of the animal—and associated 
standard errors—on any time grid, e.g. on a finer time grid than that 
of the observations.

7   | DISCUSSION

We presented a Bayesian framework to infer discrete behavioural 
states and movement parameters from a multistate continuous-
time model of animal movement. The continuous-time formulation 
can accommodate irregular time intervals, and is consistent across 
temporal scales. The conditional likelihood of the model, used in 
the MCMC algorithm, is implemented using the Kalman filter, mak-
ing it relatively fast and allowing for the inclusion of measurement 
error.

The MCMC algorithm of Section 3.2 closely resembles that 
developed by Blackwell (1997, 2003). However, they modelled the 
location of an animal (rather than its velocity) with an Ornstein–
Uhlenbeck process, which could not capture strong movement per-
sistence. Here, we adapted the approach for the CTCRW process, to 
model autocorrelation in the velocity of an animal, i.e. persistence 
in the speed and direction of movement (which is often present in 
high-frequency telemetry data). However, the CTCRW may not be 
adequate to analyse movement data that do not display this type of 
persistence. In particular, data collected on a coarse time grid may 
not exhibit autocorrelated velocities, and could instead be analysed 
with the state-switching Ornstein–Uhlenbeck model of Blackwell 
(1997, 2003).

The inferential approach introduced in this paper could in prin-
ciple be used to implement a state-switching version of the OUF 
model described by Fleming et al. (2014). The OUF process is a gen-
eralisation of the CTCRW used in this paper, and of the Ornstein–
Uhlenbeck location process used e.g. by Blackwell (1997, 2003). 
It features both persistence in velocity and long-term attraction 
towards a point in space, making it a very flexible model of animal 
movement. Like the CTCRW, it can be written as a state-space 
model, and the Kalman filter can be used to derive the likelihood 
of the model (Fleming et al., 2017). The MCMC algorithm described 
in Section 3.2 could then be used to fit a multistate OUF model to 
animal movement. However, the OUF process has five parameters 
(against 2 only for the CTCRW), which could make estimation more 
challenging. More generally, this methodology could be applied to 
a model switching between processes with different formulations 
(e.g. a 2-state model switching between a CTCRW and OUF pro-
cess). These complex multistate models could for example capture 
the structured trips of central place foragers (similarly to the dis-
crete-time models of Michelot et al., 2017).

Analyses of animal movement and behaviour often combine 
telemetry and environmental data. In state-switching models, the 
effect of environmental (or other) covariates on the transition prob-
abilities is of particular interest, and is used to uncover the drivers 
of animal behavioural and movement decisions (Bestley, Jonsen, 
Hindell, Guinet, & Charrassin, 2012; Blackwell, Niu, Lambert, & 

LaPoint, 2016; Patterson et al., 2009). Blackwell et al. (2016) de-
scribed a method of inference for the state-switching Ornstein–
Uhlenbeck movement model. They allow the transition rates to be 
functions of spatial covariates (i.e. that can be evaluated at any point 
of the study region), or to be functions of the time of day (to analyse 
circadian cycles in the behaviour of an animal). The MCMC algorithm 
of Section 3.2 could be extended, following Blackwell et al. (2016), to 
allow for the inclusion of covariates in the state-switching dynamics.

Although we refer to the states of the Markov process as ‘be-
havioural states’, it is important to note that they really are sta-
tistical states, that capture the temporal autocorrelation in the 
velocity process. They should be interpreted with caution, and 
may not exactly correspond to separate behaviours (Patterson 
et al., 2017). In particular, there can be greater uncertainty in the 
partitioning of a track if the states are not very distinct, i.e. if 
they do not clearly differ in terms of the animal’s velocity process 
(Beyer, Morales, Murray, & Fortin, 2013). In the simulation study 
and grey seal case study, we focused on the 2-state model formu-
lation, because the interpretation becomes more difficult in mod-
els with more states. Pohle, Langrock, van Beest, and Schmidt 
(2017) discussed this problem in hidden Markov models, which 
are the discrete-time analogue of the model presented in this 
work. A possible solution is to use auxiliary data, if available, to 
identify behavioural states. For example, if the behaviour of the 
animal is known for some of the observations, the corresponding 
states can be fixed throughout the algorithm, in a semi-super-
vised framework (Leos-Barajas et al., 2017). We could also in-
clude observation variables to the state-space model, in addition 
to the locations, to inform the behavioural states. For example, 
information about vertical movement has been used to identify 
behaviours in marine mammals (DeRuiter et al., 2017; McClintock, 
London, Cameron, & Boveng, 2017). In our framework, the addi-
tional observation variables would have to be modelled with a 
normal transition density, to be integrated into the Kalman filter 
likelihood computations.

The computational cost of the method presented in this paper 
greatly depends on the number of MCMC iterations needed to ob-
tain reliable estimates. As for any MCMC algorithm, convergence 
should be checked, for example using trace plots of the posterior 
samples (Gelman et al., 2013). We can improve the mixing speed of 
the algorithm with the choice of the tuning parameters, i.e. the vari-
ances of the proposal distributions for the movement parameters, 
and the length of the time interval over which the state sequence 
should be updated at each iteration. In the applications of Sections 
5 and 6, we chose the tuning parameters to obtain acceptance rates 
that are close to the optimal value (i.e. around 23%; see Roberts, 
Gelman, & Gilks, 1997). As in other frameworks, the parameters of 
the model may not all be identifiable if the behavioural states are not 
clearly distinct, or if the measurement error is large compared with 
the scale of the movement. The simulation study shown in Appendix 
C suggests that such issues can be detected by monitoring the mix-
ing speed of the MCMC algorithm, e.g. with the effective sample size 
of posterior samples. Slow mixing (and large uncertainty) indicates 
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that the corresponding parameter estimates should be interpreted 
with caution.
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