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Abstract
1.	 The	utilization	distribution	of	an	animal	describes	the	relative	probability	of	space	
use.	It	is	natural	to	think	of	it	as	the	long-term	consequence	of	the	animal's	short-
term	movement	decisions:	 it	 is	 the	accumulation	of	 small	displacements	which,	
over	time,	gives	rise	to	global	patterns	of	space	use.	However,	many	estimation	
methods	 for	 the	utilization	distribution	either	assume	the	 independence	of	ob-
served	locations	and	ignore	the	underlying	movement	(e.g.	kernel	density	estima-
tion),	 or	 are	 based	 on	 simple	Brownian	motion	movement	 rules	 (e.g.	 Brownian	
bridges).

2.	 We	introduce	a	new	continuous-time	model	of	animal	movement,	based	on	the	
Langevin	diffusion.	This	stochastic	process	has	an	explicit	stationary	distribution,	
conceptually	analogous	 to	 the	 idea	of	 the	utilization	distribution,	and	thus	pro-
vides	an	intuitive	framework	to	integrate	movement	and	space	use.	We	model	the	
stationary	(utilization)	distribution	with	a	resource	selection	function	to	link	the	
movement	to	spatial	covariates,	and	allow	inference	about	habitat	preferences	of	
animals.

3.	 Standard	approximation	techniques	can	be	used	to	derive	the	pseudo-likelihood	
of	 the	Langevin	diffusion	movement	model,	and	to	estimate	habitat	preference	
and	movement	parameters	from	tracking	data.	We	investigate	the	performance	of	
the	method	on	simulated	data,	and	discuss	its	sensitivity	to	the	time	scale	of	the	
sampling.	We	present	an	example	of	its	application	to	tracking	data	of	Steller	sea	
lions	Eumetopias jubatus.

4.	 Due	to	 its	continuous-time	formulation,	this	method	can	be	applied	to	 irregular	
telemetry	data.	The	movement	model	is	specified	using	a	habitat-dependent	uti-
lization	distribution,	and	it	provides	a	rigorous	framework	to	estimate	long-term	
habitat	selection	from	correlated	movement	data.	The	Langevin	movement	model	
can	be	written	as	a	linear	model,	which	allows	for	very	fast	inference.	Standard	
tools	such	as	residuals	can	be	used	for	model	checking.
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1  | INTRODUC TION

A	 crucial	 concept	 in	 animal	 ecology	 is	 the	 utilization	 distribu-
tion,	 ‘the	probability	density	function	that	gives	the	probability	
of	 finding	 an	 animal	 at	 a	 particular	 location’	 (Anderson,	 1982).	
In	 recent	decades,	 improvements	 in	 tracking	technologies	have	
produced	large	amounts	of	animal	location	data,	at	a	high	spatio-
temporal	 resolution.	 Statistical	 methods	 have	 been	 developed	
to	estimate	the	utilization	distribution	from	telemetry	observa-
tions,	 and	 to	 link	 the	movements	of	 individual	 animals	 to	habi-
tat	preferences	and	space	use	(Hooten,	Johnson,	McClintock,	&	
Morales,	2017).

In	those	approaches,	a	(generally	two-dimensional)	density	func-
tion	is	estimated.	It	is	of	particular	interest	for	ecological	conserva-
tion	to	relate	the	utilization	distribution	to	environmental	covariates,	
to	understand	how	animals	use	 space	 in	 response	 to	 their	habitat	
(Long,	Muir,	Rachlow,	&	Kie,	2009;	Millspaugh	et	al.,	2006;	Nielson	
&	Sawyer,	2013;	Zhang	et	al.,	2014).	For	this	purpose,	the	utilization	
function	 can	be	 formulated	 in	 terms	of	 spatial	 covariates	of	 inter-
est,	typically	using	a	resource	selection	function	(Manly,	McDonald,	
Thomas,	McDonald,	&	Erickson,	2002).	A	 resource	selection	 func-
tion	 links	 the	 distribution	 of	 observed	 locations	 of	 animals	 to	 the	
distribution	of	resources	(or	other	spatial	covariates),	to	infer	habitat	
characteristics	that	are	preferred	(or	‘selected’)	by	the	animals.	It	is	
based	on	the	 idea	that,	knowing	the	habitat	composition	of	a	spa-
tial	unit,	we	can	predict	its	long-term	utilization.	However,	resource	
selection	functions	rely	on	the	assumption	that	telemetry	observa-
tions	are	independent,	which	is	unrealistic	for	high-frequency	move-
ment	data.

Other	 popular	 approaches	 to	 estimate	 the	 utilization	 distri-
bution	 from	 tracking	data	 include	empirical	histograms	 (Nielson	&	
Sawyer,	2013),	kernel	density	estimators	(Anderson,	1982;	Worton,	
1989),	and	Brownian	bridges	 (Fleming	et	al.,	2016;	Horne,	Garton,	
Krone,	&	Lewis,	2007;	Kranstauber,	Kays,	LaPoint,	Wikelski,	&	Safi,	
2012).	Similarly	to	resource	selection	functions,	a	limitation	of	such	
methods	is	that	the	estimation	of	the	utilization	distribution	is	dis-
connected	from	the	movement	of	the	animal.	Indeed,	they	often	ig-
nore	the	sequential	structure	of	the	data	(Anderson,	1982;	Nielson	
&	Sawyer,	2013;	Worton,	1989),	 or	make	unrealistic	Brownian	 as-
sumptions	 about	 the	movement	 (Horne	 et	 al.,	 2007;	 Kranstauber	
et	al.,	2012),	although	see	Fleming	et	al.	(2015)	for	a	kernel	density	
estimator	that	corrects	for	the	autocorrelation	in	animal	telemetry	
data.	Those	models	of	space	use	do	not	estimate	the	utilization	dis-
tribution	as	a	function	of	covariates,	and	two-stage	approaches	are	
required	to	link	space	use	to	habitat	preferences	(Millspaugh	et	al.,	
2006;	Péron,	2019).

It	 is	 natural	 to	 think	 of	 the	 utilization	 distribution	 as	 a	 conse-
quence	of	the	movement,	which	itself	depends	on	the	environment.	
Short-term	 movement	 decisions,	 based	 on	 habitat	 selection,	 give	
rise	to	long-term	space	use.	This	idea	motivates	the	development	of	
more	mechanistic	approaches	that	link	the	animal's	movement	to	its	
environment,	and,	ultimately,	to	an	explicit	steady-state	distribution,	
representing	the	utilization	distribution.

Following	 this	 idea,	 step	 selection	 functions	 model	 the	 likeli-
hood	of	a	step	between	two	points	in	space	as	a	combination	of	a	
movement	kernel	and	a	habitat	 selection	 function	 (Forester,	 Im,	&	
Rathouz,	2009;	Fortin	et	al.,	2005;	Thurfjell,	Ciuti,	&	Boyce,	2014).	
The	parameters	of	a	step	selection	function	describe	preference	at	a	
local	(step-by-step)	scale,	and	strongly	depend	on	the	temporal	scale	
of	the	data,	and	on	the	choice	of	the	movement	kernel.	As	such,	their	
parameters	cannot	directly	be	linked	to	global	space	use.	Recently,	
numerical	methods	have	been	proposed	to	approximate	the	utiliza-
tion	distribution	underlying	a	step	selection	function	model.	In	par-
ticular,	Potts,	Bastille-Rousseau,	Murray,	Schaefer,	and	Lewis	(2014)	
derived	an	equation	for	the	evolution	of	the	distribution	of	an	ani-
mal's	location	in	a	step	selection	function	model	which,	when	sim-
ulated	 forward,	 converges	 to	 the	 utilization	 distribution.	 Similarly,	
Avgar,	Potts,	Lewis,	and	Boyce	(2016)	and	Signer,	Fieberg,	and	Avgar	
(2017)	suggested	that	simulations	from	a	fitted	step	selection	func-
tion	(as	implemented	by	Signer,	Fieberg,	&	Avgar,	2019)	can	be	used	
to	obtain	its	steady-state	distribution.	These	methods	are	useful	to	
derive	 long-term	 space	 use	 from	 short-term	habitat	 selection,	 but	
the	utilization	distribution	cannot	be	expressed	as	a	simple	paramet-
ric	function	of	the	spatial	covariates.

Hanks,	 Hooten,	 and	 Alldredge	 (2015)	 proposed	 a	 continuous-
time	 discrete-space	 model	 to	 link	 movement	 to	 environmental	
drivers.	In	their	framework,	the	movement	is	considered	as	a	contin-
uous-time	Markov	process	on	a	discrete	grid	of	spatial	cells.	The	spa-
tial	grid	is	usually	chosen	as	the	grid	on	which	the	spatial	covariates	
are	measured,	 and	 the	 observed	 locations	 are	 binned	 in	 the	 cells.	
Wilson,	Hanks,	and	Johnson	 (2018)	argued	that	 the	 limiting	distri-
bution	of	that	movement	model	can	be	 interpreted	as	a	utilization	
distribution,	and	proposed	a	method	to	estimate	it	on	a	discrete	grid.	
A	drawback	of	that	approach	is	that	it	describes	movement	on	a	dis-
crete	spatial	grid,	and	its	formulation	is	therefore	tied	to	a	particular	
space	discretization.

Recently,	 Michelot,	 Blackwell,	 and	 Matthiopoulos	 (2018)	 pro-
posed	a	step	selection	model,	formulated	in	terms	of	an	explicit	uti-
lization	distribution.	Their	approach	describes	individual	movement	
as	a	Markov	chain	in	continuous	space,	whose	stationary	distribution	
is	the	utilization	distribution.	In	particular,	they	suggest	that	Markov	
chain	Monte	Carlo	(MCMC)	algorithms,	which	are	used	to	construct	
Markov	chains	with	a	given	stationary	distribution,	can	be	viewed	as	
movement	models.

Others	have	described	the	position	of	an	 individual	animal	as	a	
diffusion	process	which	 follows	 the	gradient	of	 a	potential	 surface	
(Brillinger,	2010;	Gloaguen,	Etienne,	&	Corff,	2018;	Preisler,	Ager,	&	
Wisdom,	2013).	The	surface	measures	the	potential	interest	for	the	
individual,	and	it	can	be	linked	to	habitat	variables.	These	approaches	
offer	 a	wide	 variety	 of	 flexible	models	 to	 describe	movement,	 but	
their	link	to	the	utilization	distribution	is	unclear	in	the	existing	liter-
ature.	 Indeed,	potential-based	models	are	often	based	on	diffusion	
processes	that	are	not	stationary	(Gloaguen	et	al.,	2018),	or	lead	to	
unrealistically	 simple	utilization	distributions.	For	example,	 the	sta-
tionary	distribution	is	uniform	over	the	study	region	for	Brownian	mo-
tion	movement	models	(Skellam,	1951),	and	it	is	a	normal	distribution	
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for	 the	Ornstein–Uhlenbeck	model	 (Blackwell,	1997).	 Including	be-
havioural	 switching,	 with	 movement	 parameters	 that	 depend	 on	
behavioural	 state,	 gives	 more	 flexibility	 in	 the	 resulting	 utilization	
distribution,	 but	 the	 details	 depend	 on	 the	 relationship	 between	
movement	and	behavioural	parameters,	and	are	not	straightforward	
to	interpret	(Blackwell,	1997;	Harris	&	Blackwell,	2013).

In	this	work,	we	describe	a	new	mechanistic	movement	model,	
continuous	in	time	and	space.	We	model	the	animal's	position	as	a	
diffusion	process	with	a	drift	 toward	the	gradient	of	 its	stationary	
(utilization)	 distribution,	 bringing	 together	 the	 ideas	 of	 Brillinger	
(2010)	and	Michelot	et	al.	(2018).	As	in	Wilson	et	al.	(2018),	the	limit-
ing	distribution	of	the	process	is	the	utilization	distribution.

The	movement	model	that	we	propose	is	based	on	the	Langevin	
diffusion,	which	 has	 also	 been	 used	 to	 construct	 an	MCMC	 algo-
rithm	 (Roberts	 &	 Rosenthal,	 1998).	 As	 this	 model	 belongs	 to	 the	
class	of	potential-based	models,	 inference	can	be	performed	 from	
movement	 data	 using	 different	 estimation	methods	 for	 stochastic	
differential	 equations	 (SDEs),	 such	 as	 pseudo-likelihood	 methods	
which	 are	 simple	 to	 implement	 (Gloaguen	 et	 al.,	 2018).	We	 show	
here	how	this	parametric	model	can	also	be	linked	to	step	selection	
approaches	when	 the	utilization	distribution	 is	parameterized	as	a	
simple	 function	of	 environmental	 covariates.	Point	 estimators	 and	
confidence	 intervals	 of	 habitat	 selection	parameters	 can	easily	 be	
derived	in	a	classical	approximated	inference	framework.

In	Section	2,	the	proposed	movement	model	is	formulated	in	its	
general	 form,	and	we	explain	how	it	can	be	used	to	model	habitat	
selection.	Section	3	describes	a	pseudo-likelihood	method	based	on	
the	 Euler	 discretization	 scheme,	 to	 estimate	 the	 habitat	 selection	
parameters	 from	 telemetry	 data.	 In	 Section	 4,	we	 assess	 the	 per-
formance	of	 the	 inference	methods	 in	simulations,	and	we	discuss	
conditions	under	which	the	model	parameters	can	be	recovered.	In	
Section	5,	we	present	the	analysis	of	three	trajectories	of	Steller	sea	
lions	Eumetopias jubatus,	with	four	environmental	covariates	as	po-
tential	drivers	of	their	movement.

2  | L ANGE VIN MOVEMENT MODEL

2.1 | General formulation

We	denote	by	Xt∈ℝ
d	the	location	of	an	individual	animal	in	d-dimen-

sional	space	at	time	t	≥	0,	and	� :ℝd
→ ℝ	 its	utilization	distribution	

(Worton,	1989).	In	a	steady-state	regime,	the	utilization	distribution	
is	the	probability	density	function	π	which	satisfies

for any area A⊂ℝ
d.	The	two-dimensional	case	 (d	=	2)	 is	by	far	 the	

most	common	in	movement	ecology,	although	the	framework	works	
for any value of d.

We	propose	to	describe	the	continuous-time	location	process	of	
the	animal	(Xt)t≥0	with	a	Langevin	diffusion	for	the	density	π,	defined	
as	the	solution	to	the	stochastic	differential	equation

where Wt	stands	for	a	d-dimensional	standard	Brownian	motion,	∇	is	
the	gradient	operator,	and	with	initial	condition	X0 = x0.	Under	some	
easily-satisfied	technical	conditions	(that	can	be	found	in	Dalalyan,	
2017),	Equation	2	has	a	unique	solution.	Crucially,	the	solution	is	a	
continuous-time	Markov	process	with	 stationary	distribution	π,	 as	
defined	in	Equation	1	(Roberts	&	Tweedie,	1996).	The	Langevin	dif-
fusion	is	thus	a	natural	choice	to	link	a	continuous-time	model	of	an-
imal	movement	with	a	steady-state	distribution.	Indeed,	the	process	
describes	the	animal's	movements	as	the	combination	of	a	drift	to-
wards	higher	values	of	its	utilization	distribution	π	(informed	by	the	
gradient	of	log	π),	and	a	random	component	given	by	the	Brownian	
motion.

In	its	simplest	formulation,	however,	the	Langevin	diffusion	can-
not	readily	be	used	to	model	animal	movement.	Indeed,	the	speed	of	
the	process	described	above	is	only	determined	by	the	shape	of	the	
underlying	utilization	distribution	π,	whereas	 it	 should	be	possible	
for	 two	 individuals	 to	move	at	different	speeds	on	the	same	 long-
term	distribution	of	 space	use.	A	 similar	 issue	 arises	 in	 an	MCMC	
context,	where	Roberts	and	Rosenthal	 (1998)	were	 interested	 in	a	
more	flexible	class	of	Langevin-based	algorithms	to	improve	perfor-
mance.	To	allow	for	this	flexibility,	following	Roberts	and	Rosenthal	
(1998),	we	introduce	an	additional	parameter	γ2	and	we	define	the	
Langevin	movement	model	(with	speed)	as	the	solution	to

Note	 that	 if	 the	 solution	 to	 Equation	 2	 is	 denoted	 by	 X∗

t
 and 

the	 solution	 to	Equation	3	by	Xt	 then	 they	are	 related	by	Xt=X
∗

�2t

.	In	the	following,	γ2	will	be	referred	to	as	the	speed	parameter.	We	
generally	specify	the	model	in	terms	of	γ2	(rather	than	γ)	because	it	
has	a	direct	interpretation	as	the	variance	parameter	of	the	random	
Brownian	motion	component.	Xifara,	Sherlock,	Livingstone,	Byrne,	
and	Girolami	(2014)	described	an	even	more	general	process,	replac-
ing	 the	 speed	 parameter	 in	 Equation	 3	 by	 a	matrix.	 They	 showed	
that,	 in	 that	 case	 too,	 the	 stationary	distribution	of	 the	process	 is	
π.	It	should	be	noted	that,	although	we	call	γ2	the	speed	parameter,	
the	speed	of	the	process	described	 in	Equation	3	also	depends	on	
the	amplitude	of	the	local	gradient	of	the	target	distribution	π.	The	
process	will	tend	to	move	more	slowly	in	areas	where	π	is	flat	than	
where	it	is	steep.

Figure	1	shows	two	tracks	simulated	from	the	Langevin	move-
ment	model	on	an	artificial	utilization	distribution,	for	two	different	
values	of	γ2.	Although	the	two	tracks	explore	space	at	very	different	
speeds,	they	have	the	same	equilibrium	distribution.

2.2 | Including covariates

We	link	the	utilization	distribution	of	the	individual	to	spatial	covari-
ates	with	the	standard	parametric	form	of	resource	selection	func-
tions	(RSF),

(1)ℙ(Xt∈A)=∫A �(z)dz,

(2)dXt=
1

2
∇ log�(Xt)dt+dWt, X0=x0,

(3)dXt=
�2

2
∇ log�(Xt)dt+�dWt, X0=x0.
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where cj(x)	is	the	value	of	the	j-th	covariate	at	location	x,	Ω⊂ℝ
d	is	the	

study	region,	and	β	=	(β1,	…,	βJ)’	is	a	vector	of	unknown	parameters.	
The	value	of	βj	measures	the	strength	of	the	selection	(attraction	or	
avoidance)	for	the	j-th	covariate.	The	denominator	in	the	right-hand	
side	of	Equation	4	is	a	normalizing	constant,	and	is	necessary	to	en-
sure	that	π(x | β)	is	a	probability	density	function	with	respect	to	x.

We	consider	 the	Langevin	diffusion	process	with	 the	 target	dis-
tribution	π	given	in	Equation	4.	This	defines	a	continuous-time	move-
ment	 model,	 such	 that	 the	 stationary	 (utilization)	 distribution	 of	
the	process	 is	a	normalized	RSF.	 In	this	approach,	 the	movement	of	
an	 animal	 is	modelled	 in	 response	 to	 the	environmental	 features	 in	
its	 surroundings.	At	 any	 instant,	 the	 animal	 tends	 to	move	 towards	
better	habitat,	i.e.	in	the	direction	of	the	gradient	of	the	RSF.	This	is	
formulated	in	continuous	time,	unlike	other	models	of	local	habitat	se-
lection	such	as	step	selection	functions	(Forester	et	al.,	2009)	or	the	
MCMC	movement	model	of	Michelot	et	al.	(2018).	Those	models	de-
scribe	habitat	selection	at	the	scale	of	the	time	step	of	observations,	
whereas	 the	 Langevin	 movement	 model	 captures	 continuous-time	
habitat	selection,	independently	of	the	time	step	of	observations.	In	
this	respect,	the	approach	we	propose	is	similar	to	methods	based	on	
potential	 functions	 (Brillinger,	 2010).	 In	 potential-based	models,	 the	
movement	process	is	also	formulated	in	continuous	time,	and	it	is	af-
fected	by	the	shape	of	the	potential	function	in	its	surroundings.	Many	
potential-based	movement	models	are	not	stationary,	so	they	do	not	
capture	long-term	utilization.	However,	Preisler	et	al.	(2013)	described	
assumptions	under	which	a	potential-based	model	 is	stationary,	and	
for	which	the	stationary	distribution	of	the	movement	process	can	be	
derived	from	the	potential	function.	The	approach	that	we	present	can	
be	seen	as	a	special	case	of	the	model	of	Preisler	et	al.	(2013),	and	we	
model	the	stationary	distribution	as	a	function	of	spatial	covariates.

Note	that	Equation	3	requires	log	π	to	be	a	smooth	function,	i.e.	
with	continuous	first-order	partial	derivatives.	If	π	is	modelled	by	a	
resource	selection	function	(Equation	4),	then

Therefore,	it	is	supposed	here	that	all	covariates	cj	are	differentia-
ble,	and	that	their	gradients	are	continuous	at	each	point	x and can be 
computed,	either	analytically,	or	by	numerical	approximation.	In	most	
real	datasets,	the	covariate	functions	cj	are	measured	at	discrete	points	
in	space.	There	is	generally	no	analytical	form	for	the	gradient,	and	it	
is	necessary	to	interpolate	the	covariate	fields	so	that	its	gradient	can	
be	approximated.	In	Sections	4.2	and	5,	bilinear	interpolation	is	con-
sidered	to	obtain	continuous	covariate	functions.	In	the	special	case	of	
bilinear	 interpolation,	the	gradient	can	be	derived	analytically,	which	
greatly	speeds	up	the	computations	(Appendix	D).

As	 a	 consequence	 of	 the	 interpolation,	 the	 Langevin	movement	
model	 is	 not	well	 suited	 to	discrete	or	 categorical	 covariates.	While	
such	a	covariate	field	can	be	interpolated	into	a	continuous	function—
using	dummy	indicator	variables	corresponding	to	the	levels	of	a	cate-
gorical	covariate—its	gradient	will	be	zero	except	between	points	with	
different	levels	of	the	covariate	where	the	value	will	only	depend	on	
the	chosen	interpolation	method.	Thus,	over	much	of	the	space,	the	
movement	model	will	simply	be	Brownian	motion,	and	the	utilization	
distribution	will	be	uniform.	This	issue	is	further	explored	in	Section	6.

3  | INFERENCE

The	continuous-time	location	process	(Xt)t≥0	of	the	individual	is	ob-
served	discretely	at	times	t0 < t1 < ⋯ < tn,	and	these	observations	
are	denoted	by	 (x0,	x1,	…,	xn).	Here,	we	 assume	 that	 the	 locations	
are	observed	without	error,	but	we	discuss	methods	to	account	for	
measurement	error	in	Sections	5	and	6.	We	consider	J	spatial	covari-
ates	c1,	…,	cJ,	measured	on	a	grid	over	the	study	region.	θ	denotes	the	
vector	of	all	parameters	of	the	Langevin	movement	model	defined	in	
Section	2,	i.e.	θ	=	(β1,	…,	βJ,	γ

2).	This	section	describes	an	inference	
method	to	estimate	θ,	from	telemetry	and	habitat	data.	We	focus	on	
one	individual	animal,	but	the	method	can	also	be	applied	to	obtain	
joint	 inferences	 from	 several	 individuals,	 as	 presented	 in	 the	 case	
study	in	Section	5.

(4)�(x��)=
exp

�
J∑

j=1

�jcj(x)

�

∫
Ω
exp

�
J∑

j=1

�jcj(z)

�
dz

,

(5)∇ log�(x|�)=
J∑

j=1

�j∇cj(x).

F I G U R E  1   Left:	Artificial	utilization	
distribution	π. Right:	Trajectories	simulated	
from	the	Langevin	movement	model	on	
π,	with	two	different	values	of	the	speed	
parameter	γ2	(5	and	20),	after	T = 50 and 
T	=	200	time	units.	Although	the	process	
with	γ2	=	5	is	much	slower	to	explore	
space,	the	properties	of	the	Langevin	
equation	guarantee	that	both	processes	
have	the	same	stationary	distribution	π
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3.1 | Euler approximation of the likelihood

The	likelihood	of	the	observed	locations,	given	θ,	can	be	expressed	
using	the	transition density	of	the	process	(Xt)t≥0.	The	transition	den-
sity	is	the	probability	density	function	of	Xt+Δ	given	Xt = xt,	and	we	
denote	it	by	qΔ(x | xt,	θ).

Following	the	Markov	property	satisfied	by	the	Langevin	diffu-
sion	process,	and	assuming	that	the	first	position	x0	is	deterministic,	
the	likelihood	function	is

where x0:n	is	shorthand	for	the	set	of	observations,	and	Δi = ti+1	−	ti.
As	discussed	in	Gloaguen	et	al.	 (2018),	 in	many	practical	cases,	

there	is	no	closed-form	expression	for	the	density	qΔ,	and	the	like-
lihood L(θ; x0:n)	 cannot	 be	 evaluated.	 To	 circumvent	 this	 problem,	
pseudo-likelihood	 approaches	 can	 be	 used	 as	 approximations.	 In	
these	approaches,	 the	diffusion	process	 is	approximated	by	a	sim-
pler,	tractable	process.	The	intractable	transition	density	in	Equation	
6	is	then	replaced	by	that	of	the	simpler	process	(usually,	a	Gaussian	
density),	 with	 moments	 given	 by	 a	 discretization	 scheme.	 The	
‘pseudo-likelihood’	then	refers	to	the	likelihood	of	the	approximate	
diffusion	process	(Gloaguen	et	al.,	2018;	Iacus,	2009).

The	most	common	pseudo-likelihood	approach	for	discretely	ob-
served	diffusion	is	the	Euler	discretization	scheme	(Iacus,	2009).	In	
the	Euler	discretization,	the	transition	density	of	the	Langevin	diffu-
sion	 is	approximated	by	the	following	Gaussian	density	between	ti 
and ti+1,	for	i	=	0,	…,	n – 1.

Conditionally	on	{Xi = xi},

where Id	is	the	d × d	identity	matrix.	Under	this	approximation,	the	
transition	density	of	the	process	can	then	be	written	as	follows:

where �( ⋅ |�;�)	 is	 the	p.d.f.	 of	 the	multivariate	normal	distribution	
with	mean	μ	and	covariance	matrix	Σ.	This	expression	can	be	plugged	
into	Equation	6	to	obtain	the	approximate	likelihood	of	a	track	x0:n.

The	 Euler	 discretization	 can	 also	 be	 used	 to	 simulate	 (approx-
imately)	 from	 the	 Langevin	movement	model,	 as	 illustrated	 in	 the	
simulations	of	Section	4.	The	quality	of	 the	 scheme	decreases	 for	
longer	time	steps	of	simulation	(Kessler,	Lindner,	&	Sorensen,	2012,	
Chapter	1).	The	pseudo	likelihood	approach	can	also	be	used	to	de-
rive	an	approximate	AIC,	to	perform	model	selection,	as	we	demon-
strate	in	the	analysis	of	Section	5.	This	is	similar	to	the	approximate	
AIC	described	by	Uchida	and	Yoshida	(2005),	although	they	used	a	
different	discretization	scheme.

3.2 | Maximum likelihood estimation

The	pseudo-likelihood	 function	 could	 be	optimized	numerically	 to	
obtain	estimates	of	all	model	parameters.	However,	if	π	is	modelled	
with	the	resource	selection	function	of	Equation	4,	the	discretized	
movement	model	can	be	written	in	terms	of	a	linear	model,	and	the	
pseudo	maximum	likelihood	estimate	�̂	can	simply	be	obtained	using	
standard	estimators	 for	 linear	models.	 From	now	on,	we	 focus	on	
the	two-dimensional	case	(d	=	2),	for	definiteness,	but	derivation	for	
other	values	of	d	is	straightforward.

Plugging	Equation	5	into	Equation	7,	we	can	write	the	model	in	
the	following	matrix	form.	Let	Yi= (Xi+1−Xi)∕

√
Δi	be	the	two-dimen-

sional	normalized	random	increment	of	the	process	between	ti and 
ti+1,	and	denote

where Yi	=	(Yi,1,	Yi,2),	and	where	∂/∂zi	denotes	the	partial	derivative	
with	respect	to	the	i-th	spatial	coordinate.

Moreover,	let	TΔ	be	the	(2n)	×	(2n)	diagonal	matrix	with	i-th	and	
(n + i)-th	 diagonal	 terms	 equal	 to	

√
Δi−1,	 for	 i	 =	 1,	…,	n,	 and	write	

Z = TΔD.	 The	 matrix	 Z	 is	 known,	 since	 TΔ	 depends	 only	 on	 Δi−1 
(i	=	1,	…,	n),	and	D	depends	only	on	the	covariates	cj,	( j	=	1,	…,	J).	Then	
the	Euler	 approximation	of	 the	Langevin	movement	model	 can	be	
rewritten	as	follows:

where E	is	a	2n-vector	of	independent	N(0,	γ2)	variables,	and	where	
ν = γ2β.	The	estimators	for	ν and γ2	are	derived	from	standard	 lin-
ear	model	theory,	and	their	expressions	are	given	in	Appendix	A.	In	
Appendix	A,	we	also	use	 linear	model	theory	to	derive	confidence	
intervals	 for	all	 the	parameters	of	 the	model.	Under	 the	Euler	ap-
proximation,	the	computation	time	for	𝛽  and �̂�	is	equivalent	to	that	
for	 fitting	a	 linear	 regression,	 thus	very	 fast	 for	 standard	datasets	
sizes.	Another	appeal	of	the	formulation	given	in	Equation	8	is	that	
standard	 linear	model	residuals	can	be	calculated	for	the	Langevin	
movement	model,	and	used	to	assess	goodness-of-fit.

For	the	Langevin	movement	model	based	on	a	RSF,	as	defined	in	
Section	2,	the	Euler	approximation	therefore	provides	explicit	esti-
mates	and	confidence	intervals.	Note	that	the	Euler	estimator	is	bi-
ased	due	to	the	approximation	made	in	Equation	7	(see	Kessler	et	al.,	
2012,	Chapter	1).	Therefore,	both	the	estimate	and	the	confidence	
interval	must	 be	 interpreted	with	 caution,	 as	 they	 depend	 on	 the	
quality	of	the	Euler	scheme.	The	potential	use	of	other	discretization	
schemes	is	discussed	in	Section	6.

(6)L(�;x0:n)=

n−1∏
i=0

qΔi
(xi+1|xi,�),

(7)
Xi+1=xi+

�2Δi

2
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�i+1
ind
∼ N

(
0, �2ΔiId

)
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,

Y=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0,1

⋮

Yn−1,1

Y0,2

⋮

Yn−1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D=
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�c1(x0)

�z1

�c2(x0)

�z1
…

�cJ (x0)

�z1

⋮ ⋮

�c1(xn−1)

�z1

�c2(xn−1)

�z1
…

�cJ (xn−1)

�z1
�c1(x0)

�z2

�c2(x0)

�z2
…

�cJ (x0)

�z2

⋮ ⋮

�c1(xn−1)

�z2

�c2(xn−1)

�z2
…

�cJ (xn−1)

�z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)Y=Z�+E,



6  |    Methods in Ecology and Evoluon MICHELOT ET aL.

3.3 | The Metropolis‐adjusted Langevin algorithm

The	accuracy	of	the	approximation,	for	the	Euler	scheme	presented	in	
the	previous	section,	depends	on	the	time	interval	of	discretization.	
Here,	we	propose	a	method	to	measure	the	discretization	error,	based	
on	the	ideas	of	the	so-called	Metropolis-adjusted	Langevin	algorithm.

Simulations	based	on	the	Euler	discretization	of	the	Langevin	dif-
fusion	process	are	not	exact.	Roberts	and	Tweedie	(1996)	called	this	
simulation	 algorithm	 the	 ‘unadjusted	 Langevin	 algorithm’,	 and	 they	
showed	 that	 it	may	not	 converge	 to	 the	correct	 stationary	distribu-
tion	π.	In	the	context	of	MCMC	sampling,	they	described	a	“corrected”	
version	of	the	discretized	Langevin	diffusion,	to	sample	exactly	from	
the	 target	 distribution.	 They	 considered	 the	 transition	 density	 of	
the	 discretized	 Langevin	 process	 as	 the	 proposal	 distribution	 for	 a	
Metropolis–Hastings	algorithm.	This	‘Metropolis-adjusted	Langevin	al-
gorithm’	(MALA)	is	a	special	case	of	Metropolis–Hastings,	such	that	the	
limiting	distribution	of	samples	 is	the	correct	target	distribution.	We	
propose	to	use	the	MALA	indirectly,	to	assess	the	accuracy	of	the	Euler	
approximation	in	the	context	of	inference	presented	in	Section	3.2.

We	 suggest	 using	 the	 acceptance	 rate	of	 the	MALA	 to	mea-
sure	the	discrepancy	between	the	true	Langevin	diffusion	and	the	
discretized	process.	As	the	time	step	of	discretization	decreases,	
the	discretized	process	becomes	a	better	approximation,	and	the	
acceptance	 rate	 of	 the	 algorithm	 increases.	 In	 Appendix	 C,	 we	
present	simulations	from	the	MALA	at	different	time	steps	of	dis-
cretization,	and	show	that	the	acceptance	rate	tends	to	1	when	the	
time	step	is	small.	This	criterion	becomes	very	valuable	to	assess	a	
model	fitted	to	real	data.	In	the	case	of	real	data,	the	time	step	of	
discretization	is	given	by	the	time	step	of	observation,	and	it	can-
not	be	adjusted	to	improve	the	approximation.	Then,	the	problem	
is	 to	determine	whether	 the	 time	 step	of	observation	 leads	 to	a	
good	approximation	of	the	process,	in	the	context	of	the	analysis.	
This	may	 depend	on	 the	 speed	of	 the	 process	 (i.e.	 the	 speed	of	
movement	of	the	animal),	and	on	the	spatial	autocorrelation	struc-
ture	of	the	target	distribution	(i.e.	of	the	covariates	when	modelled	
with	a	RSF).	 In	Section	5,	we	use	 the	acceptance	 rate	of	simula-
tions	from	the	MALA	to	assess	a	Langevin	movement	model	fitted	
to	tracking	data	from	three	Steller	sea	lions.

4  | SIMUL ATION STUDY

In	this	section,	we	assess	the	performance	of	the	inference	method	
described	in	Section	3	in	two	simulation	scenarios.	In	both	cases,	
we	simulate	movement	tracks	from	the	Langevin	process,	using	a	
very	fine	Euler	discretization	given	in	Equation	7.	We	simulate	co-
variates	and	define	an	artificial	utilization	distribution,	expressed	
as	a	resource	selection	function,	as	shown	in	Equation	4.	The	ob-
jective	is	to	recover	the	habitat	selection	parameters	{β1,	…,	βJ} and 
the	 speed	 parameter	 γ2.	 The	 method	 presented	 in	 the	 previous	
sections	is	provided	in	the	r	package	Rhabit,	available	on	Github:	
marieetienne.github.io/Rhabit.	This	simulation	study,	and	the	anal-
ysis	of	the	next	section,	can	be	implemented	using	the	package.

4.1 | Scenario 1

We	first	consider	a	 fully	controlled	simulation	scenario,	where	the	
covariate	fields	are	given	by	smooth	analytical	functions.	In	this	ide-
alized	case,	the	gradient	of	the	covariate	functions,	and	thus	of	the	
utilization	distribution,	can	be	calculated	exactly	at	any	point	of	the	
region	of	interest.	The	utilization	distribution	π	 is	defined	as	a	RSF	
(Equation	4)	of	three	covariates	c1,	c2 and c3,	given	by

where �j,aj= (a
j
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ulation	parameters	whose	values	are	given	 in	Appendix	B.	For	the	
simulations,	we	choose	the	resource	selection	parameters	β1	=	−1,	
β2	=	0.5,	and	β3	=	−0.05,	and	the	speed	parameter	γ

2 = 1.
The	first	two	covariates	are	smooth	functions,	for	which	the	gra-

dient	can	easily	be	derived.	The	third	covariate	 is	the	squared	dis-
tance	to	the	centre	of	the	map,	and	is	used	to	include	a	weak	force	
of	 attraction	 towards	 the	 centre	 (here,	 the	point	 (0,	0),	 somewhat	
related	to	the	home	range	of	the	individual).	These	three	covariate	
functions	are	shown	in	Figure	2.	The	resulting	utilization	distribution	
is	the	one	shown	in	Figure	1.

Inference	was	performed	independently	on	600	datasets.	Each	
dataset	was	a	trajectory	of	300	points,	simulated	from	the	Langevin	
movement	model.	The	tracks	were	first	generated	at	a	fine	time	res-
olution	(Δ	=	0.01),	to	minimize	the	effect	of	the	Euler	approximation,	
and	they	were	then	thinned	to	time	intervals	of	0.5	time	units.

We	estimated	all	model	parameters	using	the	Euler	method,	pre-
sented	in	Section	3.2.	We	considered	two	different	settings:	(a)	the	
true	analytic	gradient	is	used	in	the	estimation,	and	(b)	the	covariates	
are	discretized	on	a	8	×	8	regular	grid,	and	the	gradient	is	obtained	
through	 the	 interpolation	 of	 the	 covariates.	 This	 second	 setting	
corresponds	 to	 the	more	 realistic	 case	where	 covariates	 are	 only	
observed	on	a	discrete	grid,	and	the	gradient	needs	to	be	approxi-
mated.	The	gradient	approximations	were	performed	for	the	covari-
ates	c1 and c2	using	standard	bilinear	interpolation	(see	Appendix	D	
for	details).	The	gradient	of	the	Euclidean	distance	c3	 is	computed	
exactly	in	both	cases,	as	it	could	be	in	a	real	analysis.	Boxplots	of	the	
parameter	estimates	in	the	600	replications	are	shown	in	Figure	3.	
All	parameters	were	correctly	estimated	in	this	benchmark	scenario,	
even	when	the	covariates	were	discretized	to	a	coarse	grid.	One	can	
see	a	slight	underestimation	of	the	speed	parameter.	This	is	due	to	
the	chosen	sampling	time	step,	as	discussed	in	the	next	section.

4.2 | Scenario 2

We	considered	a	second	simulation	scenario,	with	randomly	gener-
ated	covariate	fields	on	a	discrete	grid,	more	similar	to	real	environ-
mental	data.	The	main	objective	of	this	scenario	is	to	investigate	the	
effect	of	the	sampling	frequency	on	the	estimation.

cj(z)=�j exp (− (z−aj)⊺�j(z−aj))×sin
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We	 simulated	 two	 covariates	 c1 and c2	 as	 random	 fields	 over	
the	study	region	[−100,	100]	×	[−100,	100],	with	a	resolution	of	1.	
We	used	the	function	RMmatern	from	the	r	package	RandomFields 
to	generate	 the	 random	covariates	 (Schlather,	Malinowski,	Menck,	
Oesting,	&	Strokorb,	2015).	We	also	included	the	squared	distance	
to	the	centre	of	the	map	as	a	covariate,	c3,	to	ensure	that	the	sim-
ulations	did	not	go	near	the	boundaries	of	the	map,	where	the	gra-
dient	 of	 the	 covariates	 is	 undefined.	 Then,	we	 defined	 the	 target	
(utilization)	 distribution	 as	 the	 (normalized)	 RSF,	 with	 coefficients	
(β1,	β2,	β3)	=	(4,	2,	−0.1)′.	Plots	of	the	simulated	covariates,	and	of	the	
utilization	distribution	used	in	the	simulations,	are	shown	in	Figure	4.

We	simulated	100	trajectories	from	the	Langevin	movement	model	
with	target	distribution	π,	and	with	speed	parameter	γ2	=	5,	at	a	tem-
poral	resolution	of	Δ	=	0.01	hr.	(The	time	unit	is	arbitrary	here,	but	we	
include	it	for	readability.)	At	this	time	step	of	simulation,	the	Metropolis-
adjusted	 Langevin	 algorithm	 has	 an	 acceptance	 rate	 around	 99.5%,	
which	indicates	that	the	discretized	process	is	a	good	approximation	
of	the	true	process	(Appendix	C).	We	then	subsampled	each	trajectory,	
for	different	time	resolutions	Δ ∊	{0.01,	0.02,	0.05,	0.1,	0.25,	0.5,	1},	to	
emulate	datasets	obtained	at	different	observation	rates.

From	 each	 thinned	 dataset,	 we	 kept	 the	 first	 5,000	 locations	
of	each	of	 the	100	 trajectories.	We	 fitted	 the	Langevin	movement	

F I G U R E  2  Artificial	covariates	fields	for	the	simulation	scenario	of	Section	4.1.	The	resulting	utilization	distribution	is	the	one	shown	on	
Figure	1
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simulations
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model	 independently	 to	 each	 thinned	 track,	 using	 the	 estimators	
given	 in	Section	3.2.	We	evaluated	 the	gradients	of	 the	 covariates	
at	each	simulated	location	using	bilinear	interpolation.	We	obtained	
100	point	estimates	of	each	model	parameter,	for	each	time	step	of	
observation	(one	for	each	track).	The	results	are	displayed	in	Figure	5.

There	was	a	lot	of	variability	in	the	accuracy	and	precision	of	hab-
itat	selection	parameter	estimates.	The	uncertainty	on	the	estimates	
of	the	habitat	selection	parameters	decreased	as	the	time	interval	in-
creased.	This	is	not	surprising:	all	trajectories	had	the	same	number	of	
locations,	such	that	those	with	longer	time	intervals	explored	a	larger	
proportion	of	the	study	region.	For	example,	a	track	of	5,000	locations	
covers	a	time	period	of	5,000	hr	if	the	time	interval	is	Δ	=	1	hr,	but	it	
only	covers	50	hr	if	Δ	=	0.01	hr.	Tracks	with	longer	time	intervals	there-
fore	covered	a	larger	range	of	covariate	values.	Like	in	standard	linear	
model	analyses,	the	uncertainty	on	the	coefficients	is	larger	when	the	
observed	range	of	explanatory	variables	in	Equation	8	is	narrow.

To	offset	this	effect,	we	considered	a	second	analysis,	in	which	
all	tracks	covered	the	same	period	of	time.	We	thinned	each	of	the	
100	tracks	as	before,	but	we	then	kept	the	locations	over	the	time	
period	 from	 t	=	0	 to	 t	=	500	hr,	 regardless	of	 the	 time	 interval	of	
observation.	At	 a	 resolution	of	Δ	 =	0.01	hr,	 each	 track	 comprised	
50,000	locations;	for	Δ	=	1	hr,	each	track	comprised	500	locations.	
We	fitted	the	Langevin	movement	model	to	each	track	separately,	
for	each	time	resolution.	The	estimates	are	shown	in	Figure	6.

When	the	tracks	were	all	truncated	to	the	same	interval	of	time,	
the	variability	of	the	estimates	of	the	habitat	selection	parameters	
was	 the	 same	 for	 all	 time	 intervals.	 This	 suggests	 that	 the	 uncer-
tainty	on	the	estimates	of	the	habitat	selection	parameters	depends	
on	the	extent	of	spatial	exploration,	rather	than	on	the	number	of	
observations.	However,	 in	 this	 case,	 the	 variance	 in	 the	estimates	
of	the	speed	parameter	γ2	increased	as	the	number	of	observations	
decreased	(i.e.	in	this	case,	as	the	time	interval	increased).

F I G U R E  4  Simulated	covariate	fields	c1 and c2,	and	utilization	distribution	obtained	with	β	=	(4,	2,	−0.1)′,	used	in	the	second	simulation	
scenario.	Note	that	the	utilization	distribution	also	includes	the	effect	of	the	squared	distance	to	the	centre	of	the	map,	not	shown	here
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(γ2),	for	different	time	intervals	of	
observation,	when	the	number	of	
observations	is	the	same	for	all	thinned	
tracks.	The	red	dotted	lines	show	the	true	
values	of	the	parameters.	The	x	axis	is	on	
the	log	scale
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In	both	Figures	5	and	6,	the	estimates	of	β1 and β2	decreased	(on	
average)	as	the	time	interval	increased,	leading	to	an	underestima-
tion	of	 the	parameters	for	 longer	time	 intervals.	This	 is	a	common	
problem	 for	 the	 estimation	 of	 discretely	 observed	 diffusion	 pro-
cesses,	because	the	consistency	of	the	estimators	requires	Δ	to	tend	
towards	0	(for	more	details,	see	Kessler	et	al.,	2012).	For	long	time	
intervals,	the	habitat	selection	parameters	are	underestimated	in	ab-
solute	value,	 i.e.	the	strength	of	the	(positive	or	negative)	effect	 is	
underestimated.	A	possible	interpretation	of	this	bias,	in	the	context	
of	the	estimation	of	space	use	and	habitat	selection,	is	the	following.	
As	the	time	interval	increases,	the	estimated	utilization	distribution	
becomes	flatter,	to	reflect	our	growing	uncertainty	about	the	effect	
of	the	covariates	on	the	short-term	movement.	In	the	extreme,	for	
very	 long	 time	 intervals,	we	would	have	no	 information	about	 the	
selection	process,	 and	 the	estimated	utilization	distribution	would	
be	flat,	corresponding	to	a	uniform	distribution	of	space	use	over	the	
study	region.	In	this	respect,	our	approach	differs	from	other	meth-
ods	of	estimation	of	the	utilization	distribution,	such	as	resource	se-
lection	functions	or	kernel	density	estimators.	With	those	methods,	
locations	collected	at	a	coarse	resolution	are	still	informative	about	
long-term	habitat	selection	and	space	use,	and	they	could	be	used	to	
recover	the	utilization	distribution.	However,	in	the	Langevin	move-
ment	model,	space	use	is	not	estimated	directly.	Instead,	the	short-
term	 habitat	 selection	 is	 estimated,	 as	 captured	 by	 the	 effect	 of	
the	local	gradient	of	the	covariates	on	the	movement	of	the	animal.	
Therefore,	since	the	utilization	distribution	is	a	by-product,	obtained	
as	the	stationary	distribution	of	the	short-term	movement	process,	
the	Langevin	model	may	fail	to	capture	both	the	short-term	habitat	
selection	and	the	long-term	space	use	if	the	time	intervals	between	
observations	are	too	long.	In	the	case	of	very	coarse	data,	the	cor-
relation	between	successive	observed	locations	would	be	small,	and	
the	 RSF	 could	 be	 estimated	 using	 the	 standard	 generalized	 linear	

model	 approach	 based	 on	 use–availability	 data	 (Johnson,	Nielsen,	
Merrill,	McDonald,	&	Boyce,	2006).

Note	that,	although	the	strength	of	selection	was	underestimated	
in	the	simulations	with	long	time	intervals,	the	sign	of	the	effect	–	i.e.	
selection	or	avoidance	–	was	always	estimated	correctly.	The	estimates	
of	the	speed	parameter	γ2	were	very	close	to	the	true	value	in	all	simula-
tion	experiments	with	0.01	≤	Δ	≤	0.1.	It	seems	to	be	underestimated	for	
longer	time	intervals	of	observation,	because	the	total	distance	travelled	
by	the	process	is	underestimated	when	the	discretization	is	coarse.

To	 investigate	 the	performance	of	 the	method	 for	 the	analysis	
of	datasets	collected	at	irregular	time	intervals,	we	ran	a	similar	ex-
periment	where	the	observations	were	thinned	at	random.	The	re-
sults	were	very	similar	to	the	simulations	with	regular	intervals,	and	
are	 presented	 in	Appendix	 E.	 These	 findings	 confirm	 that,	 due	 to	
its	continuous-time	formulation,	the	Langevin	movement	model	can	
directly	be	used	on	tracking	data	collected	irregularly.

5  | ILLUSTR ATION

In	 this	 section,	we	 fit	 the	Langevin	movement	model	 to	 a	dataset	
described	by	Wilson	et	 al.	 (2018),	 collected	on	Steller	 sea	 lions	 in	
Alaska.	 The	 dataset	 comprises	 three	 trajectories,	 obtained	 from	
three	different	individuals,	for	a	total	of	2,672	Argos	locations.	The	
time	intervals	were	highly	irregular,	with	percentiles	P0.025	=	6	min,	
P0.5	=	1.28	hr,	P0.975	=	17.4	hr.	In	addition	to	the	locations,	Wilson	et	
al.	(2018)	provided	four	spatial	covariates	over	the	study	region,	at	
a	resolution	of	1km:	bathymetry	(c1),	slope	(c2),	distance	to	sites	of	
interest	(c3),	and	distance	to	continental	shelf	(c4).	The	sites	of	inter-
est	were	either	haul-out	or	rookery	sites.	Maps	of	the	covariates	are	
shown	in	Figure	7,	and	we	refer	the	readers	to	Wilson	et	al.	(2018)	for	
more	detail	about	the	dataset.

F I G U R E  6  Boxplots	of	100	estimates	
of	the	habitat	selection	parameters	
(β1,	β2,	β3),	and	of	the	speed	parameter	
(γ2),	for	different	time	intervals	of	
observation,	when	the	duration	is	the	
same	for	all	thinned	tracks.	The	red	
dotted	lines	show	the	true	values	of	the	
parameters.	The	x	axis	is	on	the	log	scale
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5.1 | Covariates

As	can	be	seen	in	Figure	7,	there	is	strong	collinearity	between	the	
distance	 to	 sites	 of	 interest	 and	 the	 distance	 to	 the	 shelf	 (i.e.	 be-
tween	c3 and c4).	We	derived	the	correlation	matrix	R	 for	the	four	
covariates,

This	 confirms	 that	 the	 correlation	between	 the	 covariates	 c3 
and c4	is	high	(0.98).	This	is	because	sites	of	interest	are	rookeries	
and	 haul-out	 sites,	which	 are	 on	 the	 island	 shelf.	 The	 effects	 of	
those	 two	 covariates	 therefore	 cannot	 be	 estimated	 separately,	
and	we	decided	to	exclude	 the	distance	 to	 the	shelf	c4	 from	the	
analysis.

5.2 | Data pre‐processing

To	correct	for	the	measurement	error	in	the	locations,	and	to	fol-
low	the	data	preparation	of	Wilson	et	al.	 (2018),	we	first	fitted	a	
continuous-time	correlated	random	walk	to	the	tracks,	using	the	
r	package	crawl	(Johnson	&	London,	2018;	Johnson,	London,	Lea,	
&	 Durban,	 2008).	 The	 continuous-time	 correlated	 random	 walk	

is	 a	 state-space	model,	 that	 can	 be	 used	 on	 irregular	 and	 noisy	
telemetry	data.	The	package	crawl	 implements	 the	Kalman	 filter	
for	this	model,	to	estimate	the	true	location	of	an	animal	from	ob-
servations	made	with	measurement	error.	We	used	the	code	pro-
vided	by	Wilson	et	al.	(2018)	to	fit	the	continuous-time	model	to	
each	track,	and	obtained	predicted	locations	for	the	times	of	the	
observations.

5.3 | Results

We	then	fitted	the	Langevin	movement	model	to	the	filtered	tracks,	
using	 the	 inference	method	 of	 Section	 3.	 To	 investigate	 inter-indi-
vidual	heterogeneity,	we	fitted	a	model	to	each	track	separately,	and	
then	a	 joint	model	to	the	three	tracks.	 In	the	following,	we	call	the	
three	 individuals	 ‘SSL1’,	 ‘SSL2’,	 and	 ‘SSL3’.	 In	 each	model,	we	 esti-
mated	 four	parameters:	 the	 three	habitat	 selection	parameters	 (β1,	
β2,	β3),	and	the	speed	parameter	γ

2.	In	our	approach,	most	of	the	com-
putation	time	is	needed	to	evaluate	the	gradient	of	each	covariate	at	
all	observed	locations,	which	took	less	than	one	second	on	a	2GHz	
i5	CPU.	 Like	 in	 the	 simulation	 study	of	 Section	4.2,	 the	 covariates	
were	interpolated,	so	that	their	gradient	could	be	evaluated	at	each	
filtered	location.	The	point	estimates	and	95%	confidence	intervals	of	
all	model	parameters,	obtained	from	the	equations	given	in	Section	
3.2,	are	presented	in	Table	1.	For	the	joint	model	fitted	to	the	three	
trajectories,	 the	estimated	utilization	distribution,	and	 its	 logarithm	
(for	comparison	with	Wilson	et	al.,	2018),	are	plotted	in	Figure	8.

R=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0.05 −0.60 −0.61

⋅ 1 −0.17 −0.19

⋅ ⋅ 1 0.98

⋅ ⋅ ⋅ 1
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F I G U R E  7  Covariate	maps	for	the	sea	lion	analysis
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There	are	clear	differences	in	the	estimated	parameters	for	the	
four	fitted	models.	To	select	between	the	individual	models	and	the	
joint	model,	we	compared	the	AIC	of	the	joint	model	to	the	sum of 
the	AICs	of	the	three	individual	models.	Here,	the	AIC	of	the	joint	
model	was	30,281,	and	the	sum	of	the	individual	AICs	was	29,902,	
which	indicates	that	the	individual	models	are	strongly	favoured.

In	all	models,	 the	95%	confidence	 interval	of	 the	parameter	β2 
for	the	slope	covariate	included	zero,	i.e.	the	covariate	did	not	have	
a	clear	effect	on	 the	sea	 lions’	movement.	However,	 for	 the	other	
two	covariates,	the	estimated	effects	varied	across	models.	The	esti-
mate	of	β1,	corresponding	to	the	effect	of	the	bathymetry	covariate,	
was	positive	in	the	model	fitted	to	SSL2	and	in	the	joint	model	for	
the	three	tracks.	This	suggests	that	SSL2	tended	to	move	towards	
areas	of	 shallow	water.	However,	 there	was	no	clear	effect	of	ba-
thymetry	for	SSL1	and	SSL3.	The	effect	of	the	distance	to	sites	of	
interest,	β3,	was	estimated	to	be	negative	for	SSL2	and	SSL3,	and	in	
the	joint	model.	This	 indicates	that	the	model	captured	the	attrac-
tion	of	these	two	sea	 lions	towards	the	sites	of	 interest	 (rookeries	
and	 haul-out	 sites).	 In	 the	 joint	model	 and	 in	 the	model	 for	 SSL2,	
the	estimated	effects	of	the	bathymetry	and	of	the	distance	to	sites	
of	interest	are	consistent.	Indeed,	the	sites	of	interest	are	haul-out	
sites,	or	rookeries,	which	are	located	in	areas	of	shallow	water.	The	
speed	parameter	γ2	was	also	estimated	for	the	three	individuals,	and	
is	given	 in	Table	1.	The	speed	parameters	of	SSL1	and	SSL2	were	
quite	similar,	but	the	estimate	for	SSL3	was	more	than	twice	larger,	
suggesting	faster	movement.	The	speed	parameter	should	be	inter-
preted	with	care	because,	in	general,	the	actual	speed	of	movement	

also	depends	on	 the	habitat	 selection	parameters	 (as	described	 in	
Section	 2.1).	 Here,	 the	 estimated	 speed	 parameters	 indicate	 that,	
in	the	absence	of	covariate	effects	(e.g.	 in	a	large	area	of	homoge-
neous	habitat),	SSL3	will	tend	to	move	about	twice	as	fast	as	SSL1	
and SSL2.

5.4 | Model checking

We	 can	 use	 linear	 model	 residuals	 to	 assess	 the	 goodness	 of	 fit.	
In	 Appendix	 F,	 we	 show	 a	 quantile–quantile	 plot	 of	 the	 residuals	
against	the	normal	distribution,	which	 indicates	some	clear	 lack	of	
fit.	Following	the	usual	checking	procedure	for	the	linear	model,	we	
derived	the	predicted	steps	and	inspected	persistent	structure	that	
was	not	captured	by	the	model.	The	bivariate	predicted	steps	along	
the	trajectory	of	the	seal	SSL2	are	shown	in	Appendix	F.

From	the	map	of	the	predicted	steps,	we	can	see	that	the	model	
fails	 to	 predict	 long	 steps,	which	 occur	when	 the	 animal	 is	 at	 sea	
(e.g.	in	transit	between	sites	of	interest).	This	may	be	due	to	the	lack	
of	flexibility	of	the	model	to	capture	phases	of	movement	with	dif-
ferent	 speeds.	The	 speed	parameter	 γ2	 is	 assumed	 to	be	constant	
in	 time	 so,	 even	 if	 it	 captures	 the	 average	 speed	 of	movement,	 it	
may	fail	to	account	for	either	very	slow	or	very	fast	movement.	This	
motivates	a	more	flexible	formulation	for	the	speed	parameter,	for	
instance,	a	state-switching	model	where	each	state	i	is	characterized	
by	a	different	parameter	�2

i
.	This	extension	would	not	be	straightfor-

ward	to	implement	in	continuous	time,	however,	and	would	lead	to	a	
more	complex	inference	framework.

TA B L E  1  Estimates	and	95%	confidence	intervals	in	the	Steller	sea	lion	analysis.	We	fitted	a	Langevin	movement	model	to	each	individual	
separately	(‘SSL1’,	‘SSL2’,	and	‘SSL3’),	and	then	jointly	to	the	three	individuals	(‘All	individuals’)

Parameter SSL1 SSL2 SSL3 All individuals

β1	(×	10
4) 3.67	(−1.96,	9.31) 8.17	(2.21,	14.1) 0.41	(−0.86,	1.68) 1.34	(0.004,	2.72)

β2	(×	10) −2.77	(−15.7,	10.1) 1.81	(−7.67,	11.3) 0.67	(−1.61,	2.94) 0.76	(−1.74,	3.25)

β3	(×	10
5) −1.14	(−2.89,	0.60) −4.49	(−8.73,	−0.25) −2.38	(−3.80,	−0.96) −2.06	(−3.07,	−1.05)

γ2 8.97	(8.47,	9.51) 7.49	(6.84,	8.23) 18.2	(17.1,	19.3) 12.4	(11.9,	12.8)

F I G U R E  8  Estimated	utilization	distribution	for	the	sea	lion	analysis	(left),	and	its	logarithm,	for	comparison	with	Wilson	et	al.	(2018)	
(right).	This	figure	shows	the	results	of	the	model	fitted	jointly	to	the	three	individuals.	The	black	dots	are	the	filtered	sea	lion	locations
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We	also	see	(Figure	S3	in	Appendix	F)	that	the	predicted	steps	
always	point	 towards	 shallow	water	or	 towards	 the	closest	 site	of	
interest,	because	their	direction	is	determined	by	the	estimated	hab-
itat	selection	parameters.	As	a	result,	the	model	fails	to	predict	dis-
placements	away	from	sites	of	interest,	for	example.	This	suggests	
that,	to	fully	understand	the	drivers	of	the	sea	lion	movements,	addi-
tional	covariates	may	need	to	be	included	in	the	analysis.

5.5 | Euler approach validity

As	 illustrated	 in	 the	 simulations	 of	 Section	 4.2,	we	 computed	 our	
MALA	index	by	bootstrap	to	assess	the	validity	of	the	Euler	method.	
Overall,	the	acceptance	rate	of	the	algorithm	ranged	between	93.2%	
and	99.1%,	with	a	mean	of	97.4%,	which	seems	to	indicate	that	the	
application	of	the	Langevin	movement	model	is	appropriate	for	this	
dataset.

6  | DISCUSSION

This	 work	 introduces	 a	 new	 model	 of	 animal	 movement,	 based	
on	the	Langevin	diffusion	process,	that	integrates	the	movement	
with	space	use	and	habitat	selection.	Our	model	follows	the	idea	
of	potential-based	movement	models	proposed	by	Preisler,	Ager,	
Johnson,	and	Kie	(2004),	and	it	is	explicitly	connected	to	the	utili-
zation	distribution	of	the	individual,	from	stationarity	properties	of	
the	Langevin	diffusion	process.	If	spatial	covariates	are	available,	
the	utilization	distribution	can	be	modelled	with	a	resource	selec-
tion	function,	embedded	in	the	movement	process,	to	infer	habitat	
preferences.	The	Langevin	movement	model	 therefore	describes	
animal	movement	in	response	to	spatial	covariates,	i.e.	step	selec-
tion.	Pseudo-likelihood	methods	can	be	used	to	obtain	estimates	
of	the	habitat	selection	parameters	 in	a	 linear	model	framework,	
from	which	an	estimated	utilization	distribution	can	be	computed.	
The	Langevin	movement	model	is	formulated	in	continuous	time,	
and	 it	 can	 deal	with	 location	 data	 collected	 at	 irregular	 time	 in-
tervals,	without	 the	need	to	 interpolate	 them.	Similarly,	because	
it	models	movement	in	continuous	space	(unlike	the	method	pre-
sented	by	Wilson	et	al.,	2018),	the	interpretation	of	the	results	is	
not	tied	to	a	particular	space	discretization.

In	this	paper,	we	used	the	Euler	discretization	scheme	to	obtain	
pseudo	 maximum	 likelihood	 estimators.	 This	 scheme	 is	 the	 most	
widely	used	method	to	carry	out	inference	for	discretely	observed	
diffusion	processes,	when	the	transition	density	 is	not	analytically	
tractable	(see	Brillinger,	2010;	Preisler	et	al.,	2004;	Russell,	Hanks,	
Haran,	 &	 Hughes,	 2018,	 for	 applications	 in	 ecology).	 There	 exist	
other	 pseudo-likelihood	 approaches,	 and	 Gloaguen	 et	 al.	 (2018)	
argued	that	better	inferences	could	be	obtained	with	more	refined	
schemes.	In	particular,	they	found	that	the	Ozaki	discretization	pro-
vided	more	reliable	results	in	their	applications.	However,	the	Ozaki	
scheme	requires	the	evaluation	of	the	partial	derivatives	of	the	drift,	
i.e.	the	(partial)	second	derivatives	of	log	π	in	the	Langevin	movement	
model.	To	 compare	 the	Euler	 and	 the	Ozaki	 scheme,	we	 repeated	

the	simulation	study	of	Section	4.1,	using	the	Ozaki	scheme	for	the	
estimation	(the	results	are	not	shown	here),	and	found	out	that	the	
theoretical	advantages	of	the	Ozaki	scheme	were	counterbalanced	
by	the	need	of	a	second-order	interpolation,	and	the	Euler	scheme	
provided	more	 reliable	estimates.	Therefore,	 in	 the	context	of	 the	
Langevin	movement	model,	 the	Euler	scheme	 is	typically	more	ro-
bust	as	it	requires	fewer	numerical	approximations.

In	the	case	study	of	Section	5,	we	used	a	two-stage	approach	
to	deal	with	the	measurement	error.	We	first	fitted	a	state-space	
model,	the	continuous-time	correlated	random	walk,	to	filter	the	
Argos	locations.	Then,	we	fitted	the	Langevin	movement	model	to	
the	filtered	tracks.	There	are	several	drawbacks	to	the	two-stage	
approach.	Indeed,	it	is	difficult	to	propagate	the	uncertainty	from	
the	measurement	error	to	the	final	parameter	estimates	(although	
multiple	 imputation	 could	 be	 used;	 see	 e.g.	 Scharf,	 Hooten,	 &	
Johnson,	 2017).	 Besides,	 the	 two	 stages	 are	 not	 consistent,	 be-
cause	 the	 first	 stage	 ignores	 the	 environmental	 effects	 that	 are	
estimated	in	the	second	stage.	To	avoid	this	 issue,	the	two	steps	
could	 be	 integrated	 into	 a	 state-space	 model	 that	 incorporates	
measurement	error	directly	on	top	of	the	Langevin	movement	pro-
cess.	The	state	equation	of	the	full	model	is	given	by	the	transition	
density	 of	 the	 Langevin	movement	model,	 or	 a	 discretization	 of	
it	 (like	the	one	given	 in	Equation	7).	A	natural	choice	for	the	ob-
servation	equation	would	be	 X̃i=Xi+�i,	where	 X̃i	 is	the	noisy	ob-
served	location,	Xi	is	the	true	location,	and	

{
�i∼N(0,�2

obs
I2)

}
	models	

the	measurement	error.	Under	the	Euler	scheme,	the	approximate	
transition	 density	 is	 normal,	 and	 a	 Kalman	 filter	 can	 be	 used	 to	
compute	 the	 pseudo-likelihood	 of	 this	 hierarchical	 state-space	
model.

As	 in	Michelot	 et	 al.	 (2018),	 the	 approach	 taken	here	 is	 funda-
mentally	a	local	one.	One	consequence	of	this,	touched	on	in	Section	
2.2,	is	that	within	regions	where	covariates	are	constant,	there	is	no	
selection,	as	the	drift	term	in	Equation	3	is	zero.	This	is	not	necessar-
ily	unrealistic;	in	fact	it	follows	from	the	assumption	that	the	utiliza-
tion	density	at	a	point	depends	only	on	the	values	of	covariates	at	
that	point,	as	in	Equation	4.	However,	it	does	suggest	a	more	general	
framework,	in	which	the	movement	model	is	based	on	smoothed	ver-
sions	of	 covariates,	with	 the	 spatial	 scale	of	 smoothing	 acting	 as	 a	
proxy	for	the	perception	or	decision-making	scale	of	the	animal,	as	
distinct	from	the	movement	scale.	However,	the	estimation	of	this	un-
known	spatial	scale	in	this	more	general	model	should	be	addressed.

The	 inspection	of	 the	 residuals	 in	 the	 sea	 lion	case	 study	 sug-
gested	 that	a	potential	 improvement	would	be	 to	allow	 the	 speed	
parameter	 γ2	 to	 vary	 in	 time.	 This	would	 not	 break	 the	 stationar-
ity	property	of	 the	Langevin	movement	model,	 as	 long	as	 γ2	 does	
not	depend	on	the	utilization	distribution	π	at	the	current	location.	
However,	the	linear	model	formulation	would	not	apply	in	that	case.	
In	 the	 analysis	 of	 Section	 5,	 we	 found	 that	 habitat	 selection	 and	
movement	parameters	varied	between	individuals.	Another	exten-
sion	of	the	presented	work	would	be	to	incorporate	a	random	effect	
in	 the	model,	 to	 account	 for	 individual	 deviation	 from	 the	 overall	
population	model.	Using	the	Euler	scheme,	this	extension	could	be	
written	as	a	mixed	linear	model.
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