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Abstract
Habitat selection models are used in ecology to link the spatial distribution of ani-

mals to environmental covariates and identify preferred habitats. The most widely

used models of this type, resource selection functions, aim to capture the steady-state

distribution of space use of the animal, but they assume independence between the

observed locations of an animal. This is unrealistic when location data display tempo-

ral autocorrelation. The alternative approach of step selection functions embed habitat

selection in a model of animal movement, to account for the autocorrelation. How-

ever, inferences from step selection functions depend on the underlying movement

model, and they do not readily predict steady-state space use. We suggest an anal-

ogy between parameter updates and target distributions in Markov chain Monte Carlo

(MCMC) algorithms, and step selection and steady-state distributions in movement

ecology, leading to a step selection model with an explicit steady-state distribution.

In this framework, we explain how maximum likelihood estimation can be used for

simultaneous inference about movement and habitat selection. We describe the local

Gibbs sampler, a novel rejection-free MCMC scheme, use it as the basis of a flexi-

ble class of animal movement models, and derive its likelihood function for several

important special cases. In a simulation study, we verify that maximum likelihood esti-

mation can recover all model parameters. We illustrate the application of the method

with data from a zebra.
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1 INTRODUCTION

Location data are routinely collected on animals, for example
with GPS tags, resulting in bivariate time series of coordi-
nates. Statistical methods have been developed to combine
location data with environmental data, to understand how an
animal’s use of space relates to the distributions of spatial
covariates (eg, vegetation type or resource density; see Manly
et al., 2002). A common focus of such analyses is habitat
selection, that is deviations from proportionality between
habitat availability and habitat use by the animal (Northrup
et al., 2013). Habitat availability is derived from maps of the

covariates and habitat use from the location data. If the time
that the animal spends in different habitats is not proportional
to their prevalence in the study region, this suggests that it
selects certain habitats over others, which is of great interest
for conservation.

In habitat selection studies, the goal is to estimate a habitat
selection function 𝑤{𝒄(𝒙)}, which measures the strength of
the selection for a habitat unit defined by the vector of covari-
ates 𝒄(𝒙) = (𝑐1(𝒙),… , 𝑐𝐽 (𝒙)) at spatial location 𝒙. Habitat
selection functions usually take the form

𝑤{𝒄(𝒙)} = exp{𝜷′𝒄(𝒙)}, (1)
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where 𝜷′ = (𝛽1,… , 𝛽𝐽 ) is a vector of unknown parameters.
Each parameter 𝛽𝑗 reflects the effect of the covariate 𝑐𝑗 on the
animal’s use of space (ie, apparent selection or avoidance).

Most commonly, the function 𝑤 is called the “resource
selection function” (RSF), and it is interpreted as the long-
term habitat selection by the animal (Boyce and McDonald,
1999). The RSF is used to model the stationary distribution
𝜋(𝒙) of the animal’s location in space, termed the utilization
distribution,

𝜋(𝒙) = 𝑤{𝒄(𝒙)}
∫Ω𝑤{𝒄(𝒚)}𝑑𝒚

, (2)

where Ω denotes the study region. For example, if we con-
sider a categorical habitat variable, the utilization distribution
𝜋 takes a different value over each habitat type. The utiliza-
tion distribution can be viewed as a heatmap of the animal’s
usage of space, or as the probability density for its location at
an arbitrary time.

The coefficients 𝛽𝑗 of the RSF link the utilization distri-
bution to the distributions of covariates. They can be esti-
mated from location data, for example using a logistic regres-
sion for use-availability data (Aarts et al., 2012). RSF models
assume that the observed locations are an independent sam-
ple from the utilization distribution, and they often ignore the
autocorrelation inherent in animal movement data (Fieberg
et al., 2010). To define habitat availability, RSF analyses typi-
cally assume that any location within the study area (eg, home
range, population range) is equally accessible to the individual
at each time step (Matthiopoulos, 2003). However, ignoring
the effect of movement can lead to misinterpretations, and the
definition of the region of availability can have an impact on
the estimated selection parameters and utilization distribution
(Beyer et al., 2010).

Alternatively, to address these limitations of RSFs, habi-
tat selection can be defined through a step selection func-
tion (SSF; Fortin et al., 2005; Rhodes et al., 2005), which
measures habitat selection at the timescale of the individual
observed movement steps. In an SSF model, the likelihood of
an animal moving from a location 𝒙 to a location 𝒚 is

𝑝(𝒚|𝒙) = 𝜙(𝒚|𝒙)𝑤{𝒄(𝒚)}
∫Ω 𝜙(𝒛|𝒙)𝑤{𝒄(𝒛)}𝑑𝒛

, (3)

where 𝜙(𝒚|𝒙) is the likelihood of a step from 𝒙 to 𝒚 in the
absence of covariate effects, which describes the underlying
movement model. Matched conditional logistic regression is
typically used to estimate the parameters 𝛽𝑗 of a SSF from
telemetry data (Forester et al., 2009). The autocorrelation of
the data is explicitly accounted for, with this joint model of
animal movement and habitat selection. Habitat availability
is specified by the movement model, which describes which
spatial units are accessible to the animal within one time step,
given its current location.

Although the same notation is often used in resource selec-
tion and step selection analyses, the regression coefficients 𝛽𝑗
do not represent quite the same things in the two cases, and
the methods described do not lead to the same estimates of the
coefficients, or of the function 𝑤 and the implied steady-state
distribution. In an RSF, the coefficients are directly linked
to the global distribution 𝜋(𝒙) of space use through Equa-
tion 2. However, the coefficients of an SSF measure local
habitat preference: their interpretation is tied to the choice of
the movement kernel 𝜙. Unlike the RSF, the SSF therefore
does not capture the long-term utilization distribution. This
discrepancy between the approaches has been demonstrated
analytically (Barnett and Moorcroft, 2008), and empirically
(Signer et al., 2017). The utilization distribution 𝜋 is often
of interest, and there have been efforts to derive it from the
SSF. In particular, for a generalization of the SSF model given
in Equation 3, Potts et al. (2014) described the evolution of
the distribution of the animal’s location between times 𝑡 and
𝑡 + 1. They iterated this calculation to evaluate the limiting
utilization distribution 𝜋. Alternatively, Signer et al. (2017)
suggested using simulations from a fitted SSF to estimate its
stationary distribution. Although their approaches offer a way
to numerically evaluate the steady-state distribution of an SSF
model, that distribution cannot be written as a simple function
of the spatial covariates (as in Equation 1).

Michelot et al. (2019) introduced a new model of step selec-
tion, in which both the short-term movement rules and the
long-term utilization distribution 𝜋 arise from the same habi-
tat selection process. Here, we extend that approach to a much
wider class of movement models. We show how likelihood-
based inference can be used to simultaneously estimate habitat
preference and movement characteristics from movement data
and present a simulation study to investigate the performance
of the method (in the online supplementary material). Finally,
we illustrate the application of our approach with the analy-
sis of a movement track of plains zebra (Equus quagga), and
we discuss model selection and model checking in this frame-
work.

2 ANIMAL MOVEMENT MODELS
BASED ON MARKOV CHAIN MONTE
CARLO

2.1 Markov chain Monte Carlo step selection
model

First, we briefly summarize the approach of Michelot et al.
(2019). By construction, a Markov chain Monte Carlo
(MCMC) algorithm describes step selection rules, determined
by the transition kernel 𝑝(𝒙𝑡+1|𝒙𝑡), such that the long-term
distribution of {𝒙1,𝒙2,…} is a given distribution, termed
the target distribution (Gilks et al., 1995). As such, it can be
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considered as the basis for a model of animal movement: the
transition kernel defines the movement rules of the animal,
and the target distribution is the utilization distribution 𝜋 (ie,
the long-term distribution of the animal’s space use). To link
the animal’s movement to the distribution of the covariates
of interest, we model the utilization distribution with a (nor-
malized) RSF, as given in Equation 2. The resulting model
describes an animal’s movement in response to its environ-
ment, similarly to SSF models, but it explicitly delivers the
utilization distribution 𝜋. We call it an “MCMC step selec-
tion model.”

The MCMC step selection model has two sets of parame-
ters. The parameters of the transition kernel 𝑝(𝒙𝑡+1|𝒙𝑡), that
is, the tuning parameters of the MCMC algorithm, are move-
ment parameters. The parameters of the target distribution 𝜋,
that is the 𝛽𝑗 in Equation 1, are habitat selection parameters.
Our goal is to estimate those parameters jointly from move-
ment and habitat data. Our approach provides a framework for
joint inference about short-term movement, habitat selection,
and long-term space use by animals.

In this framework, the choice of the MCMC sampler deter-
mines the choice of a movement model. Some MCMC algo-
rithms may not provide a realistic description of animal move-
ment, if the transition kernel is a poor representation of the
animal’s step selection rules. In the following section, we
extend the algorithm introduced by Michelot et al. (2019) to a
much more flexible family of movement models. The sampler
that they described is a special case of the algorithm presented
here, but we keep the “local Gibbs” name that they coined.

2.2 The local Gibbs sampler

In the context of the approach proposed in Section 2.1, our
aim is to define a flexible MCMC algorithm, with transition
rules that resemble the step selection process of an animal.
Following this idea, the local Gibbs sampler uses local infor-
mation about the target distribution to take steps in its parame-
ter space, similarly to an animal using local information about
its environment to choose where to move.

The local Gibbs algorithm for the target distribution 𝜋 is
defined as follows on the domain Ω. We choose 𝜙 ∶ Ω →
ℝ the density function of a symmetric distribution, that is
such that ∀𝒙, 𝒚 ∈ Ω, 𝜙(𝒚|𝒙) = 𝜙(𝒙|𝒚). We start from 𝒙1 ∈ Ω;
then, for 𝑡 = 1, 2,… ,

(1) Generate a point 𝝁 from 𝜙(⋅|𝒙𝑡).
(2) Define the distribution 𝜋̃ on the domain Ω by

𝜋̃(𝒙) = 𝜙(𝒙|𝝁)𝜋(𝒙)
∫
𝒛∈Ω 𝜙(𝒛|𝝁)𝜋(𝒛)𝑑𝒛

.

(3) Sample the next point 𝒙𝑡+1 from 𝜋̃.

At each iteration, 𝜋̃ represents the local information about
the target distribution 𝜋 over a neighborhood of 𝒙𝑡 defined
by 𝜙. The sampled points {𝒙1,𝒙2,…} have 𝜋 as their sta-
tionary distribution. This is verified in Web Appendix A. The
local Gibbs sampler is thus a valid MCMC algorithm for any
symmetric density 𝜙, with target distribution 𝜋. Note that it
is a rejection-free sampler, as it does not need an acceptance-
rejection step to preserve the correct stationary distribution.

In the framework described in Section 2.1, the target dis-
tribution 𝜋 can be written as a normalized RSF, with parame-
ters 𝜷, and the local Gibbs sampler defines a model of animal
movement and habitat selection. The choice of the density 𝜙

determines the shape of the movement kernel. In the follow-
ing, we consider the case where 𝜙 is a parametric function,
and we explicitly denote it 𝜙(⋅|𝒙,𝜽), where 𝜽 is a vector of
movement parameters. We discuss two useful special cases of
𝜙, the normal kernel model and the availability radius model,
in Section 2.3. The intermediate point 𝝁 sampled in step 1
of the local Gibbs algorithm does not have a biological inter-
pretation; it is a stepping stone in the construction of a valid
transition kernel.

In the general case, the step density of the model from 𝒙𝑡
to 𝒙𝑡+1 is given by the transition kernel of the algorithm,

𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽) = 𝜋(𝒙𝑡+1)

∫𝝁∈Ω
𝜙(𝒙𝑡+1|𝝁,𝜽)𝜙(𝝁|𝒙𝑡,𝜽)
∫
𝒛∈Ω 𝜋(𝒛)𝜙(𝒛|𝝁,𝜽)𝑑𝒛

𝑑𝝁. (4)

The steps of the derivation are similar to the proof of the
detailed balance condition, given in Web Appendix A. Note
that, although the algorithm is rejection-free, the step den-
sity 𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽) is typically positive at the point𝒙𝑡+1 = 𝒙𝑡,
and this model therefore does not preclude movement steps of
length zero. (See also the zero-inflated case below.)

In the absence of covariate effects (ie, if ∀𝒙 ∈ Ω, 𝜋(𝒙) =
𝑘), each step is the sum of two 𝜙-distributed increments,
and we therefore call 𝜙 the half-step density of the model.
The habitat-independent movement kernel of the local
Gibbs model is given by the convolution 𝑝0(𝒙𝑡+1|𝒙𝑡,𝜽) =∫
𝝁∈Ω 𝜙(𝒙𝑡+1|𝝁,𝜽)𝜙(𝝁|𝒙𝑡,𝜽)𝑑𝝁.

In step 2 of the algorithm given above, the integral
∫
𝒛∈Ω 𝜙(𝒛|𝝁)𝜋(𝒛)𝑑𝒛 cannot generally be evaluated analyti-

cally, unless the covariates follow a tractable parametric form.
In practice, we can use Monte Carlo integration to sam-
ple from the transition density, as follows. At each iteration,
a large number of points {𝒛1, 𝒛2,… , 𝒛𝐾} is sampled from
𝜙(⋅|𝝁), and 𝒙𝑡+1 is selected from the 𝒛𝑘, with probabilities
given by 𝜋(𝒛𝑘)∕

∑
𝑗 𝜋(𝒛𝑗). With this procedure, we can sim-

ulate movement tracks on a given utilization distribution; see
Web Appendix E for an example. The local Gibbs algorithm
would usually not be an interesting choice for the general
purpose of sampling from a probability distribution (eg, in
Bayesian inference). Indeed, although there are no rejections,
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F I G U R E 1 Slices through the two-dimensional habitat-independent step densities in three different MCMC movement models. (The step

densities are symmetric around the origin.) A, Normal kernel model. B, Availability radius model. C, Availability radius model, with time-varying

radius 𝑟𝑡 drawn from a gamma distribution. Analytical formulas can be obtained for the step densities (A) and (B), but (C) is obtained numerically

the numerical integration requires many evaluations of the
target distribution for each iteration, which renders the pro-
cedure more computationally intensive than, say, standard
Metropolis-Hastings sampling. In the following, we consider
the local Gibbs algorithm only for the purpose of modeling
animal movement.

We discuss the links between the local Gibbs algorithm and
conventional Gibbs sampling in Web Appendix C. We explore
relevant special cases of the local Gibbs model in Section 2.3,
and present extensions in Section 2.4.

2.3 Special cases of the local Gibbs model

An interesting special case of the local Gibbs model is
obtained when the half-step density 𝜙 is taken to be a bivari-
ate (circular) normal density centered on the origin𝒙𝑡. We will
call this formulation the normal kernel model. In the absence
of covariate effects, if 𝜙 is a normal distribution with variance
𝜎2𝑰 , where 𝑰 is the 2 × 2 identity matrix, then the habitat-
independent movement kernel is also a normal distribution,
with variance 2𝜎2𝑰 . In this case, the distance between 𝒙𝑡 and
𝒙𝑡+1 (the “step length”) follows a Rayleigh distribution with

scale parameter
√
2𝜎. The parameter 𝜎 of this model can thus

be linked to the speed of movement of the animal. It also deter-
mines the extent of the region over which the animal can per-
ceive its habitat.

The model described by Michelot et al. (2019) is another
special case of the local Gibbs model. In their approach, the
half-step density 𝜙 is uniform over a disk of radius 𝑟 cen-
tered on the origin. At each iteration, the point 𝝁 is sampled
from a uniform distribution over 𝐷𝑟(𝒙𝑡), where 𝐷𝑟(𝒙) denotes
the disk of radius 𝑟 and center 𝒙. Then, the endpoint 𝒙𝑡+1 is
sampled from 𝜋 truncated to 𝐷𝑟(𝝁). We will refer to 𝑟 as the
“availability radius,” drawing a parallel with the availability
radius model of Rhodes et al. (2005). Figures 1A and 1B show
the shapes of the habitat-independent transition densities of
the local Gibbs model when the half-step density 𝜙 is nor-
mal, and when it is uniform on a disk, respectively. These two
examples illustrate the flexibility of the underlying movement
model.

The local Gibbs model can also be extended to include
a discrete component in the half-step distribution. In partic-
ular, it would be possible to define a zero-inflated version
of 𝜙 as the combination of a continuous symmetric distri-
bution and some probability mass at the origin. This model
would allow for steps of length zero with positive probability,
corresponding to time steps over which the animal does not
move.

2.4 Mixture of local Gibbs steps

A mixture of MCMC algorithms, all with stationary dis-
tribution 𝜋, defines a valid MCMC algorithm for 𝜋. Tier-
ney (1994) calls these mixtures “hybrid” algorithms. In our
application, an MCMC movement model can be defined
by a combination of several transition kernels. We consider
three hybrid algorithms, to extend the local Gibbs movement
model.

2.4.1 Local Gibbs with random parameters

An extension of the local Gibbs algorithm can be obtained by
considering that the parameters 𝜽 of the half-step density 𝜙

are themselves random and are drawn independently at each
iteration from a probability distribution 𝑝(𝜽|𝝎). This results in
a hierarchical model, formulated in terms of the hyperparam-
eters 𝝎. In this case, the step density is obtained by integrating
over 𝜽, and Equation 4 becomes

𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝝎) = 𝜋(𝒙𝑡+1)∫𝜽 𝑝(𝜽|𝝎)

∫𝝁∈Ω
𝜙(𝒙𝑡+1|𝝁,𝜽)𝜙(𝝁|𝒙𝑡,𝜽)
∫
𝒛∈Ω 𝜋(𝒛)𝜙(𝒛|𝝁,𝜽)𝑑𝒛

𝑑𝝁𝑑𝜽. (5)

This extension is convenient to define more general move-
ment models. For example, the radius parameter 𝑟 of the
availability radius model of Michelot et al. (2019) could
be treated as random rather than fixed, to capture the vari-
ations in the scale of perception and movement of an
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animal through time. The radius parameter takes positive val-
ues and could be modeled with a gamma distribution with
shape parameter 𝛼 and rate parameter 𝜌. In this example,
𝜽 = 𝑟, 𝝎 = (𝛼, 𝜌), and 𝑝(𝜽|𝝎) is the gamma pdf. Figure 1C
shows the habitat-independent step density of this random
availability radius model.

2.4.2 State-switching local Gibbs model

The local Gibbs model has two sets of parameters: the param-
eters 𝜷 of the utilization distribution 𝜋, and the movement
parameters 𝜽 of the half-step density 𝜙. For example, the
movement parameters are the variance 𝜎2 in the normal ker-
nel model, and the availability radius 𝑟 in the availability
radius model. This framework can be extended by considering
that the animal switches between 𝑁 discrete states through
time, each associated with a set of movement parameters
{𝜽(1),… ,𝜽(𝑁)}. We can model the switching behavior with
a latent process (𝑆𝑡) defined on {1,… , 𝑁}, which indicates
which state is active at each time step 𝑡 (eg, a Markov chain).
Multistate models like this one are very popular in movement
ecology, to describe animal movement as the consequence of
behavior. The states are usually treated as proxies for behav-
ioral states of the animal, such as “foraging” or “exploring”
(Blackwell, 1997, 2003; Morales et al., 2004).

The target distribution of the local Gibbs sampler does not
depend on the movement parameters 𝜽. It only depends on
the habitat selection parameters 𝜷. In this multistate formula-
tion, the movement process switches between 𝑁 local Gibbs
models, all with the same parameters 𝜷 and utilization dis-
tribution 𝜋. The utilization distribution of the state-switching
model is therefore also 𝜋. The underlying MCMC algorithm
can be seen as a hybrid algorithm, based on 𝑁 transition
kernels.

Roever et al. (2014) showed that ignoring animal behav-
ior in habitat selection studies could lead to incorrect con-
clusions. They argued for a two-stage modeling approach,
in which tracks would first be classified into behavioral
states using a state-switching correlated random walk model
(Morales et al., 2004), and a separate set of habitat selection
parameters would then be estimated for each behavioral state.
The state-switching local Gibbs model that we suggest here is
different, because it estimates only one set of habitat selection
parameters for all states. This is a limitation of our approach,
because the habitat selection cannot be estimated separately in
the different states, and the estimated parameters may capture
the averaged effects of habitat selection over all behavioral
states. However, the scale of perception and movement can
differ among the states, if they are characterized by different
parameters 𝜽(𝑗). Then, the state-switching local Gibbs model
does account for the behavioral heterogeneity in the scale of
habitat selection.

2.4.3 Local Gibbs over irregular intervals

A movement model based on an MCMC algorithm is gen-
erally formulated in discrete time, where a time step of the
model corresponds to an iteration of the algorithm. This is
in particular true of the local Gibbs sampler: the parameters
of the half-step density are tied to a particular timescale. We
can relax this constraint, by making an assumption on the
relationship between the time interval and the scale of the
half-step density. In this section, we consider irregular time
points (𝑡1,… , 𝑡𝑛), and the corresponding locations 𝒙𝑗 = 𝒙𝑡𝑗 ,
𝑗 = 1,… , 𝑛.

There is no general scaling property for the parameters of
the half-step density, but we can use the assumptions of Brow-
nian motion to express this time dependence in the special
case of the normal kernel model. The variance of the tran-
sition density of the Brownian motion is proportional to the
length of the time interval (Einstein, 1905). Based on this
assumption, we consider the local Gibbs model with half-step
density 𝜙(⋅|𝒙𝑗) = 𝜑(⋅|𝒙𝑗 ,Δ𝑗𝜎

2𝑰), where 𝜑 is the normal pdf,
Δ𝑗 = 𝑡𝑗+1 − 𝑡𝑗 is the length of the time interval, and 𝑰 is the
identity matrix. The step density of this model can thus be
written

𝑝(𝒙𝑗+1|𝒙𝑗) = 𝜋(𝒙𝑗+1)∫𝝁∈Ω
𝜑(𝒙𝑗+1|𝝁,Δ𝑗𝜎

2𝑰)𝜑(𝝁|𝒙𝑗 ,Δ𝑗𝜎
2𝑰)

∫
𝒛∈Ω 𝜋(𝒛)𝜑(𝒛|𝝁,Δ𝑗𝜎

2𝑰)𝑑𝒛
𝑑𝝁. (6)

In the absence of covariate effects, the step density between
𝑡𝑗 and 𝑡𝑗+1 is 𝑝0(𝒙𝑗+1|𝒙𝑗) = 𝜑(𝒙𝑗+1|𝒙𝑗 , 2Δ𝑗𝜎

2𝑰), the transi-
tion density of the Brownian motion with diffusion rate 2𝜎2.

This can be viewed as a hybrid algorithm, with the transi-
tion kernel changing as a function of the time interval. This
formulation can be used to model movement data collected at
irregular time intervals, because the scale parameter 𝜎2 is not
tied to a particular discrete time step.

3 INFERENCE

The parameters of an MCMC step selection model can be esti-
mated, to carry out inference about the effects of environmen-
tal covariates on the animal’s movement and space use.

3.1 The local Gibbs likelihood

In the local Gibbs model, our aim is to estimate the habitat
selection parameters 𝜷 (parameters of the utilization distri-
bution 𝜋), and the movement parameters 𝜽 (parameters of
the half-step density 𝜙), from observed animal movement
and habitat data. In the following, we consider 𝑇 locations
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𝒙1,… ,𝒙𝑇 , observed without measurement error. The likeli-
hood of a step from 𝒙𝑡 to 𝒙𝑡+1, under the local Gibbs model,
is given by the transition kernel 𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽) of the algo-
rithm (Equation 4) and, for 𝑇 observed locations, the full
likelihood is obtained as the product over observed steps,
𝐿(𝜷,𝜽|𝒙1,… ,𝒙𝑇 ) =

∏𝑇−1
𝑡=1 𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽). Estimates of the

model parameters can be obtained by maximizing the like-
lihood with respect to 𝜷 and 𝜽, as here, or by using it in a
Bayesian framework.

The likelihood of a step under the normal kernel and the
availability radius models, presented in Section 2.3, can be
derived by substituting the corresponding expressions of the
half-step density𝜙 in the transition kernel of Equation 4. Sim-
ilarly, for the local Gibbs model with random parameters and
the local Gibbs model with irregular intervals, the likelihood
is given by the step densities derived in Sections 2.4.1 and
2.4.3, respectively. In Web Appendix B, we present the deriva-
tion of the likelihood for the models considered in the simu-
lation studies and analyses of the next sections.

In this framework, it is straightforward to account for miss-
ing location data in the likelihood: missing steps (ie, with
missing start point or end point) have no contribution. If sev-
eral independent movement tracks are collected, possibly on
several different animals, their joint likelihood may be calcu-
lated as the product of the likelihoods of the individual tracks,
to obtain pooled parameter estimates.

Likelihood-based model selection criteria, such as the
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), can be derived to compare competing
MCMC movement model formulations. In Section 4, we sug-
gest predictive checks to assess goodness-of-fit for the local
Gibbs model.

3.2 State-switching local Gibbs model

In the state-switching model presented in Section 2.4.2, the
parameters of the half-step density 𝜙 can take 𝑁 values
{𝜽(1),… ,𝜽(𝑁)}. An underlying state process (𝑆𝑡) determines
which of the 𝑁 densities is active at each time step 𝑡. If
(𝑆𝑡) is chosen to be a Markov chain, this defines a hid-
den Markov model, and the associated inferential machinery
can be used: the likelihood can be calculated with the for-
ward algorithm, which provides an efficient way to sum over
all possible state sequences (Zucchini et al., 2016). In the
present context, it can be written 𝐿(𝜷, {𝜽(𝑗)}|𝒙1,… ,𝒙𝑇 ) =
𝜹(1)𝑷 (𝒙1,𝒙2)𝚪𝑷 (𝒙2,𝒙3)⋯𝚪𝑷 (𝒙𝑇−1,𝒙𝑇 )𝟏, where 𝜹(1) is the
initial distribution of the Markov chain, 𝚪 = (𝛾𝑖𝑗)𝑁𝑖,𝑗=1 is its
transition probability matrix, 𝑷 (𝒙𝑡,𝒙𝑡+1) is the 𝑁 ×𝑁 diag-
onal matrix with elements {𝑝(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽(𝑗))}𝑁𝑗=1, and 𝟏 is a
𝑁-vector of ones. Maximum likelihood can be used to obtain
estimates of all model parameters, including habitat selection
parameters (𝜷), movement parameters (𝜽(𝑗)), and transition

probabilities (𝚪). The Viterbi algorithm can be implemented
to derive the most likely sequence of underlying states, given
the data and a fitted model (Zucchini et al., 2016). This
approach is used in animal movement analyses to classify
observed locations into behavioral phases, described by dif-
ferent movement characteristics (Michelot et al., 2016).

3.3 Monte Carlo approximation of the
likelihood

The integrals in the likelihood expression given in Equation 4
cannot generally be evaluated analytically. Monte Carlo sam-
pling can be used as follows to approximate the likelihood of
a step from 𝒙𝑡 to 𝒙𝑡+1.

For 𝑖 ∈ {1,… , 𝑛𝜇}, sample 𝝁𝑖 from 𝜙(⋅|𝒙𝑡,𝜽) and for 𝑗 ∈
{1,… , 𝑛𝑧} sample 𝒛𝑖𝑗 from 𝜙(⋅|𝝁𝑖,𝜽). Then the likelihood of
a step from 𝒙𝑡 to 𝒙𝑡+1, given in Equation 4, can be approxi-
mated by

𝑝̂(𝒙𝑡+1|𝒙𝑡,𝜷,𝜽) = 𝜋(𝒙𝑡+1)
𝑛𝑧

𝑛𝜇

𝑛𝜇∑
𝑖=1

𝜙(𝒙𝑡+1|𝝁𝑖,𝜽)∑𝑛𝑧
𝑗=1 𝜋(𝒛𝑖𝑗)

. (7)

In the case where 𝜽 is random, the likelihood is writ-
ten with one additional integral (Equation 5), which must
also be approximated. As an example, the approximate likeli-
hood of the random availability radius model is given in Web
Appendix D.

The approximation in Equation 7 can be made arbitrarily
accurate by choosing large sizes of Monte Carlo samples (𝑛𝜇
and 𝑛𝑧). Latin hypercube sampling can be used to reduce the
number of samples needed in the approximation of the likeli-
hood (McKay et al., 1979). In Web Appendix D, we describe
the practical implementation of the local Gibbs approximate
likelihood for the normal kernel model and the random avail-
ability radius model.

In Web Appendix E, we investigate the performance of
the method to estimate the RSF and the movement parame-
ters from simulated movement data. The simulations confirm
that all model parameters can be recovered, by numerical opti-
mization of the approximate likelihood.

4 APPLICATION: ZEBRA CASE
STUDY

We consider a track of GPS locations of one plains zebra,
acquired every 30 minutes from January to May 2014 in
Hwange National Park (Zimbabwe). The track consists of
7246 locations, regularly spaced in time, with 125 missing
observations. The habitat layer used to estimate the habitat
selection process is a vegetation map, with four categories:
grassland, bushed grassland, bushland, and woodland. A map
of the habitat and of the track is shown in Figure 2A. The code
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F I G U R E 2 A, Map of the habitats, with the zebra track overlaid (black line). B, Estimated RSF in the zebra case study, from the local Gibbs

model with normal transition kernel. This figure appears in color in the electronic version of this article, and any mention of color refers to that

version

and data used in the case study are provided in the supplemen-
tary material.

4.1 Normal kernel model

We fitted the local Gibbs model with normal half-step den-
sity to the track, using the function optim in R to numerically
optimize the (approximate) log-likelihood function. We chose
𝑛𝜇 = 𝑛𝑧 = 50 for the Monte Carlo samples in the approxima-
tion of the likelihood function (Equation 7), which was suffi-
cient in the simulation study of Web Appendix E.

A numerical optimizer is susceptible to becoming stuck in
a local maximum of the likelihood function, and failing to
find its global maximum. To circumvent this problem, we fit-
ted the model 50 times, starting from randomly chosen ini-
tial parameter values, and we selected the parameter estimates
leading to the best (largest) maximum likelihood. Each model
fit took about 8 minutes on a 2 GHz i5 CPU. For the best fitting
model, we numerically evaluated the Hessian matrix of the
log-likelihood function at the maximum likelihood estimate,
and we derived standard errors for the estimated parameters.

The estimates of the habitat selection parameters and the
Hessian-based (Wald) 95% confidence intervals are given in
Table 1 (under “Model 1”), and a map of the fitted RSF is
shown in Figure 2B. The estimated habitat selection parame-
ters indicate that this zebra selects open habitats more strongly
than wooded areas, which is consistent with the natural his-
tory of the species. Zebras prefer more open areas that provide
more forage and greater visibility. This result is also consis-
tent with an analysis based on a standard RSF, conducted by
Courbin et al. (2016) on many individuals in the same area,
albeit with a different vegetation map.

The standard deviation of the half-step density was esti-
mated to 𝜎̂ = 0.20. Under this model, in the absence of
covariate effects (eg, in a large patch of uniform habitat),
the step lengths of the animal follow a Rayleigh distribu-

tion with scale parameter 𝜆 =
√
2𝜎. The estimate of the scale

T A B L E 1 Estimates and Hessian-based 95% confidence intervals

of the habitat selection parameters, in the zebra case study, under the

local Gibbs model with normal half-step density (Model 1) and the

local Gibbs model with gamma-distributed availability radius (Model

2). The woodland habitat is the reference category, and the

corresponding coefficient is fixed to zero and not estimated

Parameter Model 1 Model 2
Grassland 𝛽G 2.76 (2.56, 2.96) 2.37 (2.11, 2.63)

Bushed
grassland

𝛽BG 1.44 (1.26, 1.62) 1.36 (1.12, 1.60)

Bushland 𝛽B 0.02 (−0.16,0.20) 0.26 (0.03, 0.49)

Woodland
(reference)

𝛽W 0 0

parameter is 𝜆̂ = 0.28, and the mean of the (habitat-
independent) step length distribution can be derived as√
𝜋∕2𝜆̂ = 0.35 km. This gives an estimate of the scale

of movement and perception of the zebra over 30 minute
time intervals.

To assess this movement model, we simulated 104 loca-
tions from the fitted model, on the same habitat map as the
observations. We compared the distribution of step lengths
observed in the zebra data set to the distribution of simulated
step lengths (Figure 3). There is a clear discrepancy between
the two distributions: the model fails to capture very short
and very long step lengths and overestimates the density of
intermediate step lengths. The empirical distribution of step
lengths has a mode at zero, and a long tail, which cannot be
appropriately modeled by this formulation. We then consid-
ered the random availability radius model for more flexibility.

4.2 Random availability radius model

We fitted the local Gibbs model with random availability
radius, described in Section 2.4.1, to the same track. We mod-
eled the availability radius with a gamma distribution and
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F I G U R E 3 Histogram of the observed step lengths in the zebra

data set. The lines show the densities of simulated step lengths,

obtained from two fitted models: the local Gibbs model with normal

half-step density and the local Gibbs model with gamma-distributed

availability radius. We truncated the 𝑥-axis to [0,1.5] for better

visualization, but the maximum observed step length is around 3 km.

This figure appears in color in the electronic version of this article, and

any mention of color refers to that version

estimated its shape and rate parameters. We used Monte Carlo
samples of sizes 𝑛𝑟 = 20 and 𝑛𝜇 = 𝑛𝑧 = 40, following the
simulation study of Web Appendix E. As in Section 4.1, we
ran the numerical optimization 50 times with random initial
parameter values, and kept the model fit with the largest like-
lihood, to avoid numerical convergence issues. Each model fit
took about 1.5 hour on a 2 GHz i5 CPU. We evaluated the Hes-
sian matrix of the log-likelihood at the maximum likelihood
estimates and derived standard errors for the parameters.

The estimates of the habitat selection parameters, and the
95% confidence intervals, are given in Table 1 (under “Model
2”), and a map of the RSF is shown in Web Appendix I. The
parameter values are quite similar to those obtained with the
normal kernel model, and the results confirm that the selec-
tion is stronger for open habitats (ie, grassland and bushed
grassland). The estimated shape of the gamma distribution
of the availability radius was 𝛼̂ = 0.78, and the rate was 𝜌̂ =
3.57. The estimated gamma distribution of the availability
radius therefore had mean 𝐸̂(𝑟𝑡) = 𝛼̂∕𝜌̂ = 0.22 km, and 95th
percentile 𝑃0.95 = 0.72 km, for 30 minute intervals.

To assess the random availability radius model, we simu-
lated a track of length 104 from the fitted model, on the same
habitat map. We compared the distributions of observed and
simulated step lengths (Figure 3). The distribution of the sim-
ulated steps resembles that of the observed steps much more
closely than with the normal kernel model. This indicates that
the model was able to capture the speed of the zebra’s move-
ment. This is remarkable, as the step lengths or the speeds are
never directly modeled: instead, we estimated the distribution
of the unobserved radius of the relocation region.

There is a trade-off between realism of the movement
model and computational speed: the random availability

radius model was 15-20 times slower than the normal ker-
nel model in this analysis, due to the additional nested inte-
gral in its likelihood (Equation 5). Here, the habitat selection
estimates 𝛽𝑗 were very similar using both models. This sug-
gests that the simpler one (normal kernel model) is sufficient
to capture the RSF, even if the movement component is not
flexible enough to capture the zebra’s step lengths. However,
we could not have known this before fitting the random avail-
ability radius model and, generally, model checking methods
should be used to verify that features of the movement are
appropriately captured by the model. In this analysis, the AIC
for the normal kernel model was −141, and the AIC for the
random availability radius model was −8906. This criterion
thus strongly favored the latter, more complex, model.

In the local Gibbs algorithm, the half-step density 𝜙 is
required to be symmetric, to satisfy the detailed balance con-
dition (Section 2.2). As a consequence, the local Gibbs model
does not include directional persistence. This can be a prob-
lem to analyze high-resolution movement data, which typi-
cally feature strong persistence. To investigate the effect of
this misspecification on the estimates of the habitat selec-
tion parameters, we fitted the normal kernel model to data
simulated from a step selection model with directional per-
sistence. The simulations are presented in Web Appendix H.
We found that, for moderately persistent movement (similar
to the zebra’s), the local Gibbs model could still accurately
recover the utilization distribution. However, for simulated
data with strongly autocorrelated directions, the estimates of
habitat preference were biased. This suggests that the local
Gibbs model may not be appropriate to analyze very per-
sistent movement, for example collected at a high temporal
resolution.

5 DISCUSSION

We showed how a new class of step selection models, based
on the same underlying concept as MCMC algorithms, can
be used to estimate an animal’s habitat selection and move-
ment characteristics. In this framework, short-term step selec-
tion gives rise to the long-term utilization distribution. This
approach connects standard RSF and SSF models, because
the equilibrium distribution of the movement model is guar-
anteed to be proportional to the underlying RSF. We described
maximum likelihood estimation for the local Gibbs sampler,
a flexible family of MCMC algorithms which can be used to
model animal movement. Parameters of movement and habi-
tat selection can be estimated jointly.

In the case study of Section 4, we compared two local
Gibbs models with different half-step densities, and we found
a trade-off between the flexibility of the movement model and
the computational cost of inference. Our framework is not lim-
ited to the special cases described here, however, and it may
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be possible to find a local Gibbs formulation that combines
the computational speed of the normal kernel model and the
flexibility of the random availability radius model. For exam-
ple, we could define the half-step density 𝜙 as the combina-
tion of a uniform distribution of turning angles and a given
distribution for the distance to the origin. The uniform angles
ensure that the half-step density is symmetric, and the shape of
the distance distribution determines the habitat-independent
movement model. It may be possible to achieve a distribution
of step lengths with a mode close to zero, as in the zebra data
set, with an exponential or Weibull distribution of distances.

An important feature of the local Gibbs model is that the
size of the region of availability does not need to be defined a
priori. In habitat selection analyses based on use-availability
designs, the choice of the spatial extent of the availability
region is challenging and can lead to biased selection esti-
mates (Beyer et al., 2010). Instead of choosing it, we estimate
it from the observed tracking data, with a movement model
based on a symmetric half-step density. The scale of avail-
ability is, for example, measured by the variance of the nor-
mal kernel model and by the radius in the availability radius
model. One limitation of this method is that the scale of avail-
ability jointly captures the accessibility and the local infor-
mation that the animal has about the habitat (eg, through per-
ception, memory, shared information). The half-step density
of the algorithm therefore describes both the distance that
the animal is likely to cover over one time interval, and the
size of the region over which it knows the habitat. This is a
strong assumption, that is made in most step selection models
(Forester et al., 2009), in which habitat selection is considered
to take place at the scale of the movement kernel. Recently,
Avgar et al. (2015) and Bastille-Rousseau et al. (2018) have
proposed models to estimate the movement process and the
perception on separate scales. Additional work is required
to allow this flexibility within the framework presented in
this paper.
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