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Varying-Coefficient Stochastic Differential
Equations with Applications in Ecology

ThéoMichelot , Richard Glennie, Catriona Harris, and Len Thomas

Stochastic differential equations (SDEs) are popular tools to analyse time series data
in many areas, such as mathematical finance, physics, and biology. They provide a
mechanistic description of the phenomenon of interest, and their parameters often have
a clear interpretation. These advantages come at the cost of requiring a relatively simple
model specification. We propose a flexible model for SDEs with time-varying dynamics
where the parameters of the process are nonparametric functions of covariates, similar to
generalized additive models. Combining the SDE and nonparametric approaches allows
for the SDE to capture more detailed, non-stationary, features of the data-generating
process. We present a computationally efficient method of approximate inference, where
theSDEparameters canvary according tofixed covariate effects, randomeffects, or basis-
penalty smoothing splines. We demonstrate the versatility and utility of this approach
with three applications in ecology, where there is often a modelling trade-off between
interpretability and flexibility.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Stochastic differential equations (SDEs) describe the evolution of a system that involves
stochastic noise (Allen 2007). We present a general approach to improving the flexibility of
such models. To introduce it, we focus on the most popular form of SDE,

dZt = μ(Zt , t) dt +σ(Zt , t) dWt , Z0 = z0, (1)

where (Wt ) is aWiener process and z0 is a known initial condition. The terms of the equation
describe the evolution of the process (Zt ): the drift μ measures the expected change in the
process over an infinitesimal time interval, and the diffusion σ captures variability. In most
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applications, the drift and diffusion are chosen as simple parametric functions; the objective
is to estimate their parameters and obtain a mechanistic description of the system. SDEs
have, for example, been applied in finance to study asset pricing (Aït-Sahalia and Kimmel
2007), in biology to describe population dynamics (Dennis et al. 1991), and in epidemiology
to predict disease spread (Allen andVan denDriessche 2006). Equation 1 includes Brownian
motion, geometric Brownian motion, and the Ornstein–Uhlenbeck process as special cases.

SDEs are used to formulate a (simplified) description of a stochastic system, and the
challenge is to build models flexible enough to reflect features of the system within the
assumed structure of Eq. 1. For this purpose, there has been interest in specifying SDEs with
time-varying dynamics. Regime-switching models have been developed, where a process
switches between a finite number of SDEs, often based on an underlying continuous-time
Markov chain (Mao and Yuan 2006). These models combine the convenience of simple
parametric models with the flexibility provided by multiple regimes and have been used
to describe, for example, the movement of animals switching between behavioural states
(Blackwell 1997) or the time-varying dynamics of oil prices (Liechty and Roberts 2001).
An alternative is to specify the parameters of a SDE as continuous-valued random processes
(e.g. Duan et al. 2009); e.g. in stochastic volatility models, the variance parameter of the
diffusion function is itself specified as a diffusion process to account for changes in the
variability (Aït-Sahalia and Kimmel 2007). Other approaches have been developed tomodel
the drift and diffusion of SDEs as nonparametric functions of time or of the value of the
process Zt , e.g. using Gaussian processes (Archambeau et al. 2007) or orthogonal Legendre
polynomials (Rajabzadeh et al. 2016). For a particular class of SDEs applied to animal
movement studies, Preisler et al. (2004) and Russell et al. (2018) suggested using splines to
model the dependence of SDE parameters on spatial covariates.

We propose a general approach where the parameters of a SDE are specified as basis-
penalty smoothing splines, similar to generalized additive models [GAMs; (Wood 2017)].
This allows for a rich class of models including linear covariate effects, factor variables,
independent random effects, and smooth (nonparametric) covariate effects. It stands in con-
trast to the regime-switching models where parameters are piecewise constant rather than
smooth. It generalizes the models where parameters are specified as Gaussian processes,
given the equivalent interpretation of Gaussian processes and smoothing splines (Wood
2017, Sect. 5.8.2), and it also extends ideas from Preisler et al. (2004) and Russell et al.
(2018) to allow for flexible covariate dependence in a more general class of SDEs. We
develop a method of inference, using a smoothing penalty in the SDE likelihood to control
the roughness of nonparametric terms. We present a computationally efficient implemen-
tation based on the R packages mgcv and TMB, for model specification and model fitting,
respectively.

We illustrate the potential of this new framework using three case studies from ecol-
ogy. SDEs have great theoretical and practical appeal for the analysis of ecological data,
because their continuous-time formulation does not depend on the sampling resolution of
the data. Inferences from these models can therefore be compared across studies with dif-
ferent sampling schemes, and they can be fitted to data collected at irregular time intervals
(e.g. Michelot and Blackwell 2019). Despite their advantages, continuous-timemodels have
been underutilized in this field, in part because they have lacked flexibility to specify time-
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varying dynamics and covariate effects, or have required computationally costly model
fitting procedures. The three case studies illustrate the utility of the newmodel over existing
parametric approaches and highlight its flexibility and computational convenience. In the
supplementary materials, we give implementation details, a simulation study, another case
study from finance, and the source code to reproduce all analyses presented in the paper.
The method that we describe is implemented in an R package, available at https://github.
com/TheoMichelot/smoothSDE.

2. VARYING-COEFFICIENT STOCHASTIC DIFFERENTIAL
EQUATIONS

2.1. MODEL FORMULATION

We consider a stochastic process (Zt ) defined by

dZt = μ(Zt , θ t ) dt + σ(Zt , θ t ) dWt , (2)

where the driftμ and diffusion σ depend on a time-varying parameter vector θ t . We assume
thatμ and σ are known functions of Zt and θ t ; they determine the type of stochastic process
(e.g. Brownian motion, Ornstein–Uhlenbeck process). The parameter θ t depends on time
through its relationship with J temporal covariates x1t , x2t , . . . , xJ t , and we write each
component θt of θ t as

h(θt ) = β0 + f1(x1t ) + f2(x2t ) + · · · + f J (xJ t ),

where h is a link function, β0 is an intercept parameter and, for j = 1, . . . , J , f j could be
a linear effect of a covariate, an independent random effect, or a smooth function. A simple
example would be to have x1t = t , to express that the dynamics of the process depend on
time. For smooth functions or random effects, we employ the basis-penalty approach (Wood
2017), writing the functions as linear combinations of m j basis functions {ψ jk},

f j (x) =
m j∑

k=1

β jkψ jk(x), (3)

where several standard bases could be considered, e.g. cubic splines, thin plate regression
splines, or B-splines. We will refer to this model as a varying-coefficient stochastic differ-
ential equation, as an analogy with the varying-coefficient models of Hastie and Tibshirani
(1993).

2.2. MODEL FITTING

We consider n observations (z1, z2, . . . , zn) from the process (Zt ), collected at (possibly
irregular) times t1 < t2 < · · · < tn . The aim is to estimate the relationship between the
parameters θ t governing the drift and diffusion of the process and the covariates. Themethod
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that we propose is based on (1) the likelihood of the observations under the SDE model and
(2) a penalty added to the likelihood to control the roughness of nonparametric terms in θ t .

2.2.1. Likelihood

Diffusion processes are Markovian, so the likelihood of n observations can be obtained
as the product of the likelihoods of the individual transitions,

L(α,β|z1, . . . , zn) = [Zt1 = z1, . . . , Ztn = zn]

= [Zt1 = z1]
n−1∏

i=1

[Zti+1 = zi+1|Zti = zi ], (4)

where β contains the basis coefficients from Eq. 3 and α is the vector of other parameters
of the model (e.g. linear covariate effects), and where [·] is the pdf. The dependence on α

and β is omitted in the right-hand side of Eq. 4 for notational simplicity. We assume that
the first value z1 is deterministic, such that [Zt1 = z1] = 1.

Evaluating the likelihood requires computation of the transition density [Zti+1 |Zti ] of
the process. For many common processes, such as Brownian motion, geometric Brownian
motion, and the Ornstein–Uhlenbeck process, this density has an analytical expression.
In such cases, the transition density of the corresponding varying-coefficient process can
be approximated by assuming that the parameter θ t is fixed over each time interval of
observation. Then, the time-varying parameter θ ti can be substituted into the transition
density of the standard process. However, many SDEs of the form given in Eq. 2 do not
have a closed-form transition density. More generally, we can then use the Euler–Maruyama
discretization, and approximate the transition density [Zti+1 |Zti = zi ] by the pdf of a
normal distribution with mean zi + μ(zi , θ ti )�i and variance σ(zi , θ ti )

2�i , where �i =
ti+1−ti . This approximation assumes that the drift and diffusion terms are constant over each
interval [ti , ti+1) between two observations. We present the varying-coefficient versions of
several common processes in Appendix A and give their approximate transition densities.
Substituting the approximate transition density into Eq. 4 yields the approximate likelihood
for the full data set.

This method of inference is not exact, because it uses the transition density of the time-
discretizeddiffusionprocess. TheEuler–Maruyamadiscretizationhas the advantageof being
widely applicable and easy to implement, but the accuracy of the estimation will decrease
for longer time intervals between observations. Tomitigate the effects of this approximation,
we could include additional time points in the time series of observed data, corresponding
to “missing” observations, and integrate over them, e.g. using either Markov chain Monte
Carlo methods or the Laplace approximation (Elerian et al. 2001; Albertsen 2019). Adding
these missing values to the grid of observations leads to a finer time resolution and improves
the accuracy of the approximation, such that the error can be made arbitrarily small.

The process (Zt ) might sometimes not be observed directly, in which case the problem
of inference is slightly different. This can be viewed as a state-space model, where the
state equation is given by the transition density [Zti+1 |Zti ] (e.g. obtained using the Euler
approximation), and the observation equation is the density [Z̃ti |Zti ], where Z̃ti denotes the
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observations. In this context, Z̃t could, for example, include measurement error or be a more
general function of Zt . The diffusion process of interest is a latent process in the model,
and it must be marginalized over to obtain the likelihood of the observed data. In the case
of a Gaussian linear state-space model, the Kalman filter can be implemented, with time-
varying parameters, and the likelihood obtained as a by-product. In this case, the Kalman
filter can also be used to integrate over missing data in a data augmentation scheme to
improve the discretization approximation. One example of a latent-state SDE is the velocity
Ornstein–Uhlenbeck model described by Johnson et al. (2008), where the observed process
(location) is the integral of a diffusion process (velocity). In that model, the location process
is smooth, and it is therefore convenient to describe the persistent movement of an animal or
particle, or other processes with strong autocorrelation. Non-Gaussian state-space models
can also be accommodated using Markov chain Monte Carlo or the Laplace approximation
to marginalize over the state process, as suggested, for example, by Albertsen et al. (2015).
We present two examples of state-space SDE models in Sect. 3.

2.2.2. Smoothing Penalty

Within the basis-penalty approach of GAMs, the roughness of the smoothing splines can
be penalized in the likelihood, to obtain smooth relationships between the parameter θ t and
the covariates. The penalized log-likelihood is

l p(α,β,λ|z1, . . . , zn) = log{L(α,β|z1, . . . , zn)} −
∑

j

λ jβ
T
j S jβ j , (5)

where L(α,β|z1, . . . , zn) is the unpenalized likelihood given in Eq. 4, β j is the vector of
basis coefficients, S j is the smoothing matrix associated with the chosen penalty, and λ j is a
smoothness parameter for the j-th smooth term in θ t (Wahba 1990). S j is a matrix of known
coefficients, and it is constructed such that βT

j S jβ j measures the roughness (wiggliness)
of the corresponding smooth term (Wood 2017). The penalized log-likelihood can then be
used to perform maximum likelihood estimation, or Bayesian inference can be performed
if the penalty is viewed as an improper prior on the basis coefficients.

In Eq. 5, the penalized log-likelihood is expressed in terms of the degrees of smoothness
λ = (λ1, λ2, . . .) of the smoothing splines. In most applications, λ is unknown, and it must
be estimated from the data. Here, we consider the marginal likelihood approach, i.e. we
treat the basis coefficients β of the splines as random effects, and integrate them out of the
likelihood. This yields the marginal likelihood of the smoothness parameters λ and other
fixed parameters α,

L(α,λ|z1, . . . , zn) =
∫

L(α,β|z1, . . . , zn)[β|λ]dβ, (6)

where [β|λ] is the density of a multivariate normal distribution with mean zero and block-
diagonal precision matrix. Each block of the precision matrix corresponds to the penalty for
the basis coefficients of one smoothing spline, and it can be written λ j S j . As with standard
GAMs, various basis-penalty smooths could be used. In the applications of Sect. 3, we
considered thin plate regression splines, which are optimal in the sense defined by Wood
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(2003), with a shrinkage penalty to ensure that the smooth terms shrink to zero when the
penalty tends to infinity (Marra and Wood 2011).

2.2.3. Implementation

The marginal likelihood can be implemented in the R package TMB, which uses the
Laplace approximation to integrate over the random effects (Kristensen et al. 2016), and the
design matrices for the basis functions and the penalty matrices can be computed with the R
package mgcv (Wood 2017). A numerical optimizer (e.g. optim or nlminb) can then be
used to minimize the marginal likelihood and obtain estimates of the smoothness parameter
λ and fixed effects α.We can get predicted values for the random effects β, analogous to best
linear unbiased predictors in linear mixed effect models, to infer the smooth relationships
between SDE parameters and covariates. The joint precision matrix of fixed and random
effects can be used for uncertainty quantification.

TMBmakes it relatively simple to include other randomeffects in themodel. It is often the
case, e.g. in animal movement or financial studies, that the data arise frommultiple instances
of the SDE (multiple animals, stocks, etc.) and one wishes to fit a model that combines these
instances while also allowing for inter-individual variation. The case of i.i.d. normal random
effects is easily handled, as it is another type of basis-penalty smoother, where the penalty
matrix is the identity matrix (Wood 2017, Sect. 7.7).

We describe the details of the implementation of this method, using mgcv and TMB, in
Appendix B. We ran simulation experiments to investigate the performance of the proposed
approach to recover the relationship between the SDE parameters and the covariates, under
several model formulations. In those simulations, we thinned the simulated data to irregular
time intervals, to mimic a real data set, and the method performed well in all scenarios
(Appendix C). We also performed a simulation experiment to check the coverage of confi-
dence intervals derived for θ t using the precision matrix given by TMB and found that they
correctly represented the uncertainty in the estimates (Appendix C).

2.3. MODEL SELECTION AND MODEL CHECKING

In this framework, it might be useful to discriminate between competing model formula-
tions, e.g. different forms of the drift and diffusion terms. The problem of model selection in
models involving basis-penalty smooths is relatively understudied outside standard GAMs.
Wood (2017) describes two versions of theAkaike information criterion (AIC), themarginal
AIC and the conditional AIC, based on different forms of the likelihood and AIC penalty
(i.e. number of parameters in basic AIC). The marginal AIC uses the marginal likelihood
defined in Eq. 6 with a penalty for the number of fixed effects α and smoothing parameters λ

and would be straightforward to implement in the framework of Sect. 2.2.3. The conditional
AIC is based on the joint penalized likelihood of fixed and random effects (Eq. 5), with an
additional AIC penalty on the complexity of smooth terms [given by the number of effective
degrees of freedom; see Sect. 5.4.2 of Wood (2017)]. For more detail about the respective
limitations of these two criteria and possible solutions, see Sect. 6.11 of Wood (2017). An
alternative approach for model selection is to include an additional penalty in the likelihood,
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so that model components can be shrunk to zero (i.e. removed from the model) as part of
the smoothness parameter estimation (Marra and Wood 2011).

For a chosen formulation, we propose a simple diagnostic to investigate goodness-of-fit
in varying-coefficient SDE models. Based on the Euler–Maruyama discretization of the
process, a natural choice for model residuals εi is

εi = zi+1 − (zi + μ(zi , θ̂ ti )�i )

σ (zi , θ̂ ti )
√

�i

,

for i = 1, . . . , n − 1, using the notation of Sect. 2.2.1, and where θ̂ ti is the estimate of θ t

over [ti , ti+1). Under the assumptions of the model (and of the discretization), the residuals
should be independent and approximately follow a standard normal distribution. In the
analysis of Sect. 3.3, we use quantile–quantile plots of the residuals to investigate lack of
fit, and autocorrelation function plots to identify residual autocorrelation.

3. ILLUSTRATIVE EXAMPLES

In this section, we present three analyses based on ecological data, to illustrate differ-
ent applications of the models presented in Sect. 2. We stress, however, that the varying-
coefficient approach is general to SDE modelling, and our focus is chosen only because we
are most familiar with these ecological problems. To further demonstrate the generality of
the method, we also provide the analysis of a financial data set of oil prices in Appendix D.

3.1. LINKING ELEPHANT MOVEMENT TO ENVIRONMENTAL CONDITIONS

We illustrate the utility of varying-coefficient SDEs to analyse animal movement data,
using the trajectory of an African elephant (Loxodonta africana) presented by Wall et al.
(2014b) and available on the Movebank data repository (Wall et al. 2014a). We restricted
the analysis to a period from May to September 2009 to avoid seasonal effects. The data
set consisted of a time series of 3652 Easting–Northing locations and also included the
air temperature measured by the tag, at a time resolution of 1 hour (with a few missing
observations).

We used a varying-coefficient version of the continuous-time correlated random walk
model presented by Johnson et al. (2008); the original model has been used extensively to
analyse animal location data. In this model, the (unobserved) velocity V t of the animal is
formulated as a varying-coefficient Ornstein–Uhlenbeck process,

dV t = −rtV t dt +st dW t ,

where rt and st can be linked to the speed and sinuosity of the movement. This is a special
case of the varying-coefficient SDE of Eq. 2 where μ(V t , t) = −rtV t and σ(V t , t) = st ,
i.e. with parameters θ t = (rt , st ). (Although the process V t is bivariate, it is isotropic
and the two dimensions can therefore be treated as two univariate processes driven by
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Figure 1. Results of the elephant analysis. Estimates of the speed parameter νt = √
πst/(2

√
rt ), as a function

of temperature. The black line is the mean estimate, and the grey shaded area is a 95% confidence band .

the same parameters.) Because the velocity is unobserved, the model can be written as a
state-space model where V t is latent, and where the observed process is the location of the
animal, obtained as Zt = Z0 + ∫ t

0 V s ds. As described in Sect. 2.2.1, we implemented the
likelihood using a Kalman filter with time-varying parameters. To investigate the effects of
environmental conditions on the elephant’s behaviour, we estimated the parameters rt and
st of the velocity process as functions of the air temperature. For interpretation, we then
derived the parameter νt = √

πst/(2
√
rt ), described by Gurarie et al. (2017) as a measure

of the speed of movement of the animal. Model fitting took about 5 min on a 1.3GHz Intel
i7 CPU.

Figure 1 shows estimates of the speed parameter νt as a function of temperature. A small
value of νt corresponds to slowmovement, encompassing behaviours with little activity (e.g.
resting), and a large value corresponds to more active behaviours (e.g. exploration, transit).
The speed parameter was highest at low temperatures (20–30 degrees) and decreased for
higher temperatures, with a very steep decline above 40 degrees. This is consistent with
what is known of the species: elephants are very sensitive to heat and spend much of their
time resting or waiting in the shade during periods of high temperatures (Mole et al. 2016).
Our nonparametric approach illuminated the nonlinear relationship between the temperature
and the speed of movement of this elephant.

Other varying-coefficient models have been proposed in movement ecology to capture
the effects of time-varying covariates on animal behaviour. In particular, Hanks et al. (2015)
modelled animal movement over a discrete spatial grid as a continuous-time Markov chain
with time-varying transition rates and linked transition rates to covariates using basis func-
tions (similarly to Eq. 3). This continuous-time discrete-space model and its extensions
have, for example, been used to investigate the effects of time-varying environmental con-
ditions on the movements of cougars (Hanks et al. 2015; Buderman et al. 2018), fur seals,
and ants (Hanks and Hughes 2016). The varying-coefficient SDEs presented in this paper
offer an alternative framework to incorporate similar covariate effects in the dynamics of
continuous-valued random processes (e.g. the continuous location or velocity of an animal).
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SDEs have also been popular for analysing animal tracking data, e.g. to model animal
behaviour (Blackwell 1997), the effects of environmental features on movement decisions
(Preisler et al. 2004; Michelot et al. 2019), and the emergence of home ranges (Dunn and
Gipson 1977). Regime-switching SDEs have been developed to allow for time-varying
dynamics in the movement, where the latent state represents the behaviour of the animal
(Blackwell 1997; Michelot and Blackwell 2019). However, discrete behavioural states may
lack the flexibility to capture the wide range of behaviours that animals display. It has also
been difficult to include general covariate effects in that context; inference has typically
required computationally costly custom algorithms (Blackwell et al. 2016). The method
we propose to include factor covariates, linear or smooth effects of continuous covariates,
and random effects in SDE models is an important step forward to link animal movement
behaviour to environmental and individual-specific conditions.

The output of regime-switching models (classification of data into clusters) may some-
times be more readily interpretable than the smoothly varying parameters suggested here.
In such cases, we could use a clustering algorithm on the estimated θ t values to identify
different regimes in the time series and interpret each cluster based on its centre, say. This
procedure could be repeated on posterior draws of θ t to account for uncertainty in the
clustering.

Preisler et al. (2004) and Russell et al. (2018) presented application-specific methods to
define smooth relationships between movement parameters and spatial covariates in SDEs.
The approach presented in this paper is a generalization of their work to a wider class of
SDEs, where any parameters can be specified using basis-penalty smooths. Note that the
varying-coefficient CTCRWmodel could be fitted with the R package crawl (Johnson et al.
2008; Johnson and London 2018), using the joint likelihood of all parameters rather than the
marginal likelihood of Eq. 6. That package does not implement the smoothness parameter
estimation, and this would need to be done in an additional model selection stage.

3.2. BODY CONDITION OF ELEPHANT SEALS

We considered a study of body condition of elephant seals described by Schick et al.
(2013), where the authors modelled body fat content over time, and how it was affected by
environmental conditions. We used the data set from Pirotta et al. (2019), which includes
information about drift dives of 26 Northern elephant seals (Mirounga angustirostris). The
goal of the study was to investigate the dynamics of the body fat content of seals during
migratory foraging trips, which last several months. Animals’ body fat content cannot be
observed directly when they are at sea. However, using telemetry tags fitted with depth
sensors, we can measure the rate at which seals drift vertically in the water column during
non-active dives [“drift dives”; (Biuw et al. 2003)]. This drift rate is linked to the percentage
of body fat because fat content affects buoyancy. A natural modelling approach, proposed by
Schick et al. (2013), is therefore to treat body fat content as a latent process in a state-space
model and estimate how it changes during a foraging trip from the drift rate observations.

We formulated a continuous-time analogue of the model of Schick et al. (2013) and
defined the body fat content Lt as a Brownian motion with time-varying drift, i.e. dLt =
rt dt + σ dWt (Eq. 2 with μ(Lt , t) = rt and σ(Lt , t) = σ ). The time-varying parameter
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rt measured the daily rate of change of the lipid content, with larger values indicating
faster accumulation of fat mass. We combined the above SDEwith the observation equation
proposed by Schick et al. (2013) to obtain the following state-space model formulation

Observation process Di ∼ N

(
α1 + α2

Li

Ri
,

τ 2

hi

)

State process Li+1 ∼ N (Li + ri�i , σ 2�i )

where i is the day index, Di is the mean drift rate, Li is the lipid content, Ri is the non-lipid
content, hi is the number of drift dives, and α1, α2 and τ are parameters of the observation
process.We followedSchick et al. (2013) in assuming a constant diffusionσ and investigated
the effects of two covariates on the lipid change rate rt : (1) surface transit per day and
(2) distance to the colony where the animals were tagged. We chose these covariates to
link fat gains (i.e. foraging behaviour) to movement patterns and geographical location. In
preliminary analyses, we included two other covariates from Schick et al. (2013) (body fat
proportion at departure and daily number of drift dives), but found no evidence of an effect.
We included a random normal intercept in rt to account for differences between seals.

We implemented the likelihood of this model with the Kalman filter, and estimated
the effects of the covariates on the drift parameter following Sect. 2. Schick et al. (2013)
fitted their state-space model within a Bayesian framework, using informative priors for
τ 2 and σ 2 based on biological knowledge. We included the same prior distributions as
multiplicative terms in the likelihood, therefore performing maximum posterior estimation
for those parameters. Model fitting took about 2 min on a 1.3GHz Intel i7 CPU.

Results are shown in Fig. 2. The lipid gain rate rt was estimated to decrease with daily
transit distance, which is consistent with the findings of Schick et al. (2013). This suggests
that lipid gains are low when seals are travelling at high speeds, and that foraging is charac-
terized by less horizontal movement. We also found that lipid gains increased with distance
to the colony, in particular between 0 and 2000km. This indicates that animals must travel
a considerable distance from their breeding colony to find foraging grounds that are rich
enough for them to start gaining fat. Figure 2 shows a map of the movement tracks of the
seals, coloured by the predicted value of rt , which highlights portions of the trips with high
lipid gains. Our results provide a mechanistic justification for the assumption often made
in elephant seal studies that slow horizontal movement at sea is associated with foraging
behaviour (e.g. Michelot et al. 2017).

This application shows how SDEs can be built as alternatives to discrete-time models
[such as the state-space model of Schick et al. (2013)], which do not depend on the time
resolution of the data and can be applied to data collected at irregular intervals. Another dif-
ference with Schick et al. (2013) is that we implemented the Kalman algorithm and Laplace
approximation (with TMB) to integrate over latent components of the model, whereas they
used computationally costly Markov chain Monte Carlo methods.
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Figure 2. Results of elephant seal body condition study. a Estimated relationship between lipid gain parameter rt
and two covariates: daily transit distance (left) and distance to colony (right). The black lines are mean estimates,
and the grey shaded areas are 95% confidence bands. Each estimate was obtained by fixing the other covariate to
its mean. b Elephant seal movement tracks, coloured by predicted value of rt . This figure appears in colour in the
electronic version of this article .

3.3. DIVING BEHAVIOUR OF BEAKED WHALES

Beaked whales are marine mammals that routinely dive to depths in excess of 1 km for
periods of over an hour. Animal-borne telemetry tags allow study of their diving behaviour
(Johnson and Tyack 2003; DeRuiter et al. 2013). Here, we consider data collected from high-
resolution tags that include accelerometer and magnetometer sensors [“DTAGs”; (Johnson
and Tyack 2003)], attached to four Cuvier’s beaked whales (Ziphius cavirostris). In general,
beaked whales display two different types of dives with different physiological functions:
deep and shallow dives. The structures of deep and shallow dives are very distinct and would
require separate models. Here, we focused on shallow dives and also excluded sections of
the data where the animals were at the sea surface (depth < 15 m). The data set comprised
nd = 73 shallow dives from the four whales, with a median duration of 23 min. Multiple



T. Michelot et al.

variables can be derived fromDTAGdata, andwe computed the Euler angles (pitch, roll, and
heading), which describe the posture of the animal in the water (Johnson and Tyack 2003).
The pitch is the angle between the main body axis and the horizontal, the roll is the angle
around the main body axis, and the bearing is the angle in the horizontal plane (Figure S4
of supplementary material). The sampling rate of the raw data varied between 5 and 25Hz,
and we downsampled by taking averages over non-overlapping 5-s windows, to reduce the
computational cost while keeping a sufficiently fine resolution to detect behavioural changes
over each dive. This resulted in a total of 20,041 observations for each variable.

Visual inspection of the data suggested that shallow dives all had a similar structure, with
different phases of each dive displaying different levels of activity. Our aim was therefore to
characterize the typical behaviour of beakedwhales, asmeasured by their postural dynamics,
during the different diving phases (e.g. descent, ascent, bottom). In preliminary analyses,
we tried modelling each variable (pitch, roll, heading) with Brownian motion, but residual
analysis revealed that the model did not capture heavy tails in increments of the process. We
therefore replaced the Gaussian transition density with a generalized t distribution with fixed
degrees of freedom (ν = 3, based on visual data exploration) and estimated the location
parameter rt and the scale parameter st as time-varying. Here, we used the Euler–Maruyama
discretization of the process (rather than the SDE itself) as the “model of record” to build a
more complex model, as suggested by Brillinger (2010) in a similar context. Although this
model is not a special case of the SDE given in Eq. 2, the method described in Sect. 2 can be
applied, with the likelihood defined as the pdf of a t distribution for each observed transition.
The details of the model are described in Appendix E of the supplementary material. For
this example, the three processes were treated as independent.

Themodel had two parameters: the location rt and scale st of the t-distributed increments.
To investigate the time-varying behaviour of beakedwhales, we specified rt and st as smooth
functions of the proportion of time through the dive xt ∈ [0, 1]. We treated the dives
as independent and included random intercepts for the dive in rt and st , to account for
variability between individuals and between dives. In summary, there were six time-varying
parameters (rt and st for each of the three data variables), modelled for each variable as

rt = ζdt + fr (xt ), ζ j ∼ N (μζ , (σζ )
2) for j ∈ {1, 2, . . . , nd},

log(st ) = ξdt + fs(xt ), ξ j ∼ N (μξ , (σξ )
2) for j ∈ {1, 2, . . . , nd},

where dt ∈ {1, 2, . . . , nd} is the dive index at time t , fr and fs are basis-penalty smooths,
and {μζ , σζ , μξ , σξ } are unknown hyper-parameters.Model fitting took 30min on a 1.3GHz
Intel i7 CPU. The estimated relationships between the parameters and the proportion of time
through the dive are shown in Fig. 3.

The estimated drift parameter rt for pitch was positive over the whole dive, suggesting
that pitch tended to increase during a typical dive. This is consistent with the observed
convex shape of the dives: pitch increases between the descent and bottom phases, and
again between the bottom and ascent phases. The estimated drift for roll was close to
zero and did not seem to be affected by the phase of the dive, suggesting that there were
no particular trend in that variable. The estimated drift in heading was negative during
the final part of the dive (ascent), but the confidence bands were wide and overlapped
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Figure 3. Estimates of the drift (rt , top row) and diffusion (st , bottom row) parameters as functions of the
proportion of time through the dive, in the beaked whale analysis. The three columns correspond to the three
modelled variables: pitch (left), roll (middle), and heading (right). The black lines are the mean estimates, and the
grey shaded areas are 95% confidence bands. All estimates were obtained with the mean random effect intercept .

Figure 4. Quantile–quantile plots of the residuals against the Student’s t distribution with ν = 3 degrees of
freedom, for the beaked whale analysis .

zero. All three diffusion parameters st suggested that there was more variability at the
start and end of each dive, i.e. during ascent and descent, than when the whale was at the
bottom. This variability can be viewed as a proxy for the level of activity: more diffusion
suggests more frequent postural changes. Variability in pitch was low during the bottom
phase, which may be associated with gliding motion, whereas it was high during descent
and ascent, suggesting continued stroking or “stroke-and-glide” motion. These changes in
the pitch diffusion parameter showed how whales alternate between different swimming
styles over each dive, which has been linked to energetic efficiency in response to drag
forces and buoyancy (Miller et al. 2004; Martín López et al. 2015). Roll displayed highest
variability during the ascent phase, and the diffusion parameter for headingwasmuch higher
during the final phase of the dive, just before the whales surfaced again, corresponding to
more directional changes in the horizontal plane. These postural changes may have several
functions, such as locating predators before surfacing (when thewhales aremost vulnerable),
socializing with conspecifics, and orienting to sea currents.

Quantile–quantile plots of the residuals against the appropriate standardized t distribu-
tions are shown in Fig. 4, and suggest appropriate fit. However, we found autocorrelation in
the residuals using autocorrelation function plots, pointing to features of the whales’ move-
ment that were not included in the model (Fig. S5 of the supplementary material). Most
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notably, there was positive autocorrelation in the heading residuals over about 1–2min, sug-
gesting that some persistence in heading was not captured by the model. It might be more
adequate to model heading with a process that induces correlation between increments,
such as a one-dimensional version of the continuous-time correlated random walk used in
Sect. 3.1. There was no correlation between residuals of the three processes (pitch, roll, and
heading), supporting our decision to model them separately.

Most existing analyses ofDTAGdata have been based on dive-by-dive summary statistics
of activity (e.g. dive duration, maximum depth), and have looked at broad behavioural
patterns (e.g. DeRuiter et al. 2013; Quick et al. 2017). This contrasts with our approach,
where the behaviour of beaked whales is modelled at a fine time resolution over each dive,
and the dives are treated as realizations of an underlying random process. Using varying-
coefficient SDEs, we could estimate amore detailed description of thewithin-dive activity of
whales. As another alternative, discrete-time regime-switching models have been proposed
to analyse data of this kind [i.e. hidden Markov models (Isojunno and Miller 2015; Leos-
Barajas et al. 2017)], and a similar continuous-time approach could be implemented. In
that setting, the states of the latent process would represent discrete regimes of activity. For
high-resolution data, however, it may often be preferable to model behaviour as changing
smoothly in time (rather than switching between discrete states). The method that we use
also makes it straightforward to investigate the effects of covariates (if available) and to
include random effects to capture differences between individuals.

4. DISCUSSION

In this paper, we have focused on a univariate diffusion process (Zt ) and suggested using
independent diffusion processes for each dimension in the case of multivariate data (e.g.
the three postural angles in Sect. 3.3). The proposed method could similarly be applied to
the N -dimensional diffusion process (Zt ) defined by the equation dZt = μ(Zt , θ t )dt +
σ (Zt , θ t )dW t , where μ(Zt , θ t ) ∈ R

N , W t ∈ R
N , and σ (Zt , θ t ) ∈ R

N×N . In this case,
the drift μ and diffusion σ might be functions of several time-varying parameters. We
can use the Euler–Maruyama discretization to obtain the (approximate) transition density
as a multivariate normal distribution and estimate the model parameters as in Sect. 2. A
simulation study may be required to investigate identifiability in such models, when a large
number of time-varying parameters must be estimated jointly.

The method of inference that we presented in Sect. 2 is approximate, as it relies on
the time discretization of the drift and diffusion functions. As suggested in Sect. 2.2.1,
data augmentation can be used to improve the accuracy of the method, but there are no
general guidelines as to when this might be necessary. Recent studies have evaluated the
approximation error of the Euler–Maruyama method for special cases of SDEs (Albertsen
2019;Michelot et al. 2019), but the performance of the approachwill be application-specific.
The discretization is based on the assumption that the SDE parameters θ t are fixed over each
time interval, i.e. the error depends on how fast θ t varies over time. Future work could focus
on developing diagnostics to assess the time resolution of discretization, e.g. based on the
distribution of first-order differences in estimated values of θ t .
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The parameters of a varying-coefficient SDE are specified using basis-penalty smooths,
and we therefore assume a smooth relationship between parameters and covariates. There is
some flexibility in this formulation, because the smoothness parameter is estimated from the
data, but it may not always be appropriate. In particular, if the relationship involves abrupt
changes (e.g. discontinuities), then it may not be well captured by a smooth function, and
regime-switching models may be preferable. To better understand this issue, it would be
interesting to compare the results of the varying-coefficient approach and a regime-switching
model on the same data set. However, this may not be straightforward in practice, as there is
no generally applicable method to include covariates in continuous-time regime-switching
models. We could also consider integrating regime switches into varying-coefficient SDEs,
i.e. defining each SDE parameter by several smooths between which the process switches
through time. This model can be viewed as a continuous-time hidden Markov model where
the state-dependent observation distribution is given by the transition density of the SDE,
and the approximate likelihood of this model could be obtained using existing methodology.

We suggested using the package TMB to implement the marginal likelihood and to
integrate over random effects using the Laplace approximation. TMB also uses automatic
differentiation to evaluate the gradient of the log-likelihood, which improves computational
speed (Kristensen et al. 2016). This fast implementation has a downside: to build the gradient
function, TMB needs to create the “computational graph” of the likelihood, i.e. its repre-
sentation in terms of elementary functions (for which the analytical gradient is known). In
our experience, the construction of this graph can be memory-intensive for large data sets
or complex model formulations, and may not be feasible on standard desktop computers.
In those cases, high-performance computing systems with more memory may be required.

The model presented for the time-varying parameters of SDEs relies on the general
methodology of generalized additive models (GAMs), which has been greatly extended
beyond the basic formulation presented herein. In particular, an interesting direction for
future research will be the implementation of hierarchical GAMs (Pedersen et al. 2019)
in this framework. Here, the smooth relationship between response and covariates can
vary across groups, while retaining some common features (related to shape and degree
of smoothness). This extension could be applied to investigate inter-individual differences
in ecological analyses, with more nuance than the simple random-intercept model men-
tioned in Sect. 2.2.3. We could, for example, define the response of several animals to
an environmental covariate with functions comprising a population-level mean component
and individual-level components measuring the individual deviations from the mean. Other
extensions of GAMs, such as adaptive smoothing (Wood 2017, Sect. 5.3.5) or tensor prod-
uct smooth interactions (Wood 2017, Sect. 5.6), could further increase the applicability of
varying-coefficient SDEs.
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