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Abstract
1. Hidden Markov models (HMMs) and their extensions are attractive methods for 

analysing ecological data where noisy, multivariate measurements are made of 
a hidden, ecological process, and where this hidden process is represented by 
a sequence of discrete states. Yet, as these models become more complex and 
challenging to understand, it is important to consider what pitfalls these meth-
ods have and what opportunities there are for future research to address these 
pitfalls.

2. In this paper, we review five lesser known pitfalls one can encounter when using 
HMMs or their extensions to solve ecological problems: (a) violation of the snap-
shot property in continuous- time HMMs; (b) biased inference from hierarchical 
HMMs when applied to temporally misaligned processes; (c) sensitive inference 
from using random effects to partially pool across heterogeneous individuals; 
(d) computational burden when using HMMs to approximate models with con-
tinuous state spaces; and (e) difficulty linking the hidden process to space or 
environment.

3. This review is for ecologists and ecological statisticians familiar with HMMs, 
but who may be less aware of the problems that arise in more specialised ap-
plications. We demonstrate how each pitfall arises, by simulation or example, 
and discuss why this pitfall is important to consider. Along with identifying the 
problems, we highlight potential research opportunities and offer ideas that may 
help alleviate these pitfalls.

4. Each of the methods we review are solutions to current ecological research 
problems. We intend for this paper to heighten awareness of the pitfalls ecolo-
gists may encounter when applying these more advanced methods, but we also 
hope that by highlighting future research opportunities, we can inspire ecologi-
cal statisticians to weaken these pitfalls and provide improved methods.
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1  |  INTRODUCTION

The statistical methods used in ecology are becoming increasingly 
complex. What statistical and computational pitfalls do these meth-
ods have? What future research opportunities are there for these 
methods to be improved? In this paper, we discuss these two ques-
tions for a popular class of statistical models: hidden Markov models 
(HMMs; Zucchini et al., 2017).

Hidden Markov models are widely applied in ecology, from 
individual- level to ecosystem- level modelling [see McClintock 
et al. (2020) for a comprehensive overview of the application of 
HMMs in ecology]. Their intuitive structure often corresponds with 
our conceptual models for ecological systems: there is a hidden pro-
cess unfolding over time from which we obtain noisy, multivariate 
observations. In their commonest form, HMMs consist of two time 
series 

(
StY t

)
, in discrete time, where St is a hidden (unobserved) state 

that can take one of a finite number of values and Y t is a collection 
of observed variables whose distribution we assume depends on the 
hidden state St, termed its state- dependent distribution. Crucially, 
it is assumed the observations are independent given the states. 
Over time, states evolve as a Markov process which is described by 
a transition probability matrix �t whose (i, j)th entry is the probabil-
ity that St+1 = j given St = i. Key properties of HMMs are that they 
commonly deal with observations in regular, discrete time; the state, 
St, switches between a pre- specified finite number of possible val-
ues; and there are computationally efficient algorithms to quickly fit 
HMMs to large amounts of data.

The successful application of HMMs in ecology has inspired fur-
ther use that goes beyond the standard application of HMMs, and it 
is these extended uses that this paper will discuss (Readers unfamil-
iar with HMMs are encouraged to consult McClintock et al. (2020) or 
Zucchini et al. (2017) for an introduction). We consider five extended 
uses of HMMs: (a) HMMs in continuous time; (b) hierarchical HMMs; 
(c) HMMs with random effects; (d) approximating state space mod-
els with HMMs; and (e) two- stage analyses of decoded states from 
HMMs. Each extended use adds complexity to what is already a 
complex statistical analysis and so we ask the two questions above: 
what pitfalls are revealed and what future research opportunities 
are there? We hope this discussion will serve two audiences. For 
ecologists familiar with HMMs, it provides a statistical overview of 
more advanced uses of HMMs, focusing on what possible problems 

a practitioner may encounter. For statistical ecologists or ecological 
statisticians, we hope this paper serves as a resource to inspire fu-
ture research, either to weaken the pitfalls we highlight in HMMs or 
to introduce alternative methods to solve these problems.

2  |  CONTINUOUS-TIMEHIDDENMARKOV
MODEL S

2.1  |  Introduction

A continuous- time HMM has the same dependence structure as a 
discrete- time HMM, but the underlying state St of the system is de-
termined by a continuous- time Markov chain. An N- state continuous- 
time Markov chain is defined by an N × N transition rate matrix,

where qi =
∑

j≠iqij for all i . The time spent in each state i  follows an ex-
ponential distribution with mean 1∕qi. The non- diagonal elements of 
the matrix are strictly positive and proportional to the transition prob-
abilities out of state i  (within each row). For any given time interval of 
length Δ > 0, the corresponding transition probability matrix over that 
time interval can be computed from the transition rate matrix with a 
matrix exponential:

The key property of continuous- time HMMs is that they do not require 
observations made at regular time intervals, and the times of observa-
tions do not need to match the times of state transitions. A schematic 
representation of the dependence structure of a continuous- time 
HMM is shown in Figure 1.

Continuous- time HMMs have been popular in medical statis-
tics, in particular to study disease progression in patients from con-
sultations done at irregular time intervals (e.g. Bureau et al., 2003; 
Jackson et al., 2003; Liu et al., 2015). However, they remain rare 

Q =

⎛⎜⎜⎜⎜⎜⎜⎝

−q1 q12 ⋯ q1N

q21 −q2 ⋯ q2N

⋮ ⋮ ⋱ ⋮

qN1 qN2 ⋯−qN

⎞⎟⎟⎟⎟⎟⎟⎠

(1)�Δ = eQΔ.

F IGURE 1 Comparison of dependence graphs for discrete- time (left) and continuous- time (right) HMMs. in both cases, the distribution 
of an observation only depends on the current value of the state. The key difference is that, in a continuous- time HMM, the times of state 
transitions (�1, �2, …) and the times of observation (t1, t2, …) do not need to match, and both may be irregularly spaced
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in ecological studies, despite their broad applicability to irregular 
datasets. We posit that they have been underutilised because the 
mathematical theory behind continuous- time Markov processes is 
less intuitive than its counterpart in discrete time, and because 
of the apparent lack of accessible software to readily apply this 
method. However, much of the inferential framework developed 
for discrete- time HMMs can also be used in continuous time, 
based on the relationship between transition rates and transition 
probabilities in Equation (1). This includes the forward algorithm 
and the Viterbi algorithm (Zucchini et al., 2017). In many situa-
tions, the implementation of a continuous- time HMM is virtually 
identical to that of a discrete- time HMM, with the only difference 
being that the likelihood function is parametrised in terms of tran-
sition rates. Yet, it is once you move from discrete to continuous 
time that a central property of HMMs becomes less intuitive: the 
snapshot property.

2.2  |  Pitfall:Snapshotpropertyviolation

The snapshot property is satisfied if the value of the observation 
process at time t  only depends on the state at that time, rather than 
on past values of the state (Patterson et al., 2017). In discrete time, 
this is a well- understood assumption; however, in continuous time, 
state transitions could happen at any time (Figure 1). Continuous- 
time HMMs are therefore only suitable when the distribution of 
each observation does not depend on the intermediate sequence 
of switches that have occurred since the previous observation. 
When this is not the case, the snapshot property may still be a 
reasonable approximation if observations occur at a high temporal 
resolution relative to the scale of state switching, that is, if only a 
small proportion of observation intervals contain state switches. 
We illustrate this below using simulations. One context where the 
snapshot property is usually violated is state- switching models 
based on relatively infrequent observations of animal locations or 
velocities, because these variables depend on the behaviour of the 
animal over the whole time interval between observations rather 
than at the time of observation (Blackwell et al., 2016; Michelot 

& Blackwell, 2019; Patterson et al., 2017). We therefore inves-
tigated the approximation error arising from using a continuous- 
time HMM in cases where the snapshot property is not satisfied. 
As a simple example of a movement model, we considered a 
two- state Brownian motion process with no drift, where the dif-
fusion parameter was small in state St = 1 (slow movement) and 
large in St = 2 (fast movement). To facilitate interpretation of the 
simulations, we used parameters estimated from a real dataset of 
Antarctic petrels (Thalassoica antarctica) from the Movebank data 
repository (Descamps et al., 2016a, 2016b). The diffusion param-
eters estimated from the petrel data were 

(
�1�2

)
= (1.2,14.9) (i.e. 

mean distance travelled over 1 h was 1.5 km in state 1 and 18.7 km 
in state 2), and the transition rates were q12 = 0.29, and q21 = 0.33 
(i.e. expected dwelling time was 3.4 h in state 1 and 3 h in state 
2). The details of the petrel analysis and the formulation of the 
Brownian motion are given in Section S1.1 of the Supplementary 
Material.

We generated data using those parameters and mimicked the 
real- life scenario where the behavioural switching times are un-
known, to evaluate the error caused by violations of the snapshot 
property. We then assessed the performance of the approximation 
based on bias between true and estimated parameters, and on the 
proportion of correctly estimated states, for different time intervals 
of observation. The simulation procedure is described in Section 
S1.2 of the Supplementary Material, and the results are shown in 
Figure 2. As expected, the approximation error increases with the 
mean time interval because more switches can occur between ob-
servations (but each observation is assumed to only depend on the 
state active at that time).

The performance of the continuous- time HMM methodology in 
contexts where the snapshot property does not hold depends on 
the time- scale at which the hidden states occur (i.e. on the transition 
rates) relative to the time- scale of the observations. Our results sup-
port an intuitive rule of thumb for determining whether or not any 
given sampling interval may reasonably satisfy the snapshot property:

(2)Δ ≤
1

maxi
(
qi
) ,

F IGURE 2 Results of continuous- time HMM simulation study. Estimated parameters �1 (a) and �2 (b), and state estimate accuracy (c) for 
simulated data with different mean time intervals, from 0.25 h to 16 h. Each box contains 200 replications, for each simulation scenario
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that is, the mean time interval of observation should be shorter than 
the shortest expected dwelling time (3 h in our example). However, 
as with all HMMs, performance will also depend on the amount of 
state- dependent observation distribution overlap, serial correlation 
in the hidden state sequence, and other properties of the data (e.g. 
McClintock, 2021; Zucchini et al., 2017). These results suggest that 
continuous- time HMMs should not be applied naively in ecological 
studies where the snapshot property is known to be violated, in par-
ticular when the time intervals of observations are long relative to the 
time- scale of the state process.

2.3  | Opportunities

Our simulation results indicated that it is important to consider 
whether or not the snapshot property is reasonably satisfied when 
using continuous- time HMMs for ecological data. Continuous- time 
HMMs have recently been proposed for the analysis of capture– 
recapture data (Choquet et al., 2017, Mews, Langrock, King, 
et al., 2020), where the observation is a categorical variable which 
indicates whether an animal was captured or not at a given cap-
ture occasion, and the hidden state is the existential state of that 
animal (usually ‘alive’ or ‘dead’). The probability of capturing the ani-
mal at time t only depends on whether the animal is alive at time t, 
rather than on whether it was alive over the whole interval since the 
last capture occasion, and the system therefore has the snapshot 
property. Continuous- time HMMs are a natural framework for this 
type of data because capture occasions are often irregular in time. 
Similarly, HMMs developed for occupancy data could be extended 
to the continuous- time case, because the observation (‘detected’ or 
‘not detected’) does not depend on the history of the state process, 
conditional on the current state (‘present’ or ‘absent’; see Royle & 
Kéry, 2007; MacKenzie et al., 2018).

For other types of data where the snapshot property cannot be 
satisfied by study design (e.g. by ensuring time intervals are suffi-
ciently short relative to the transition rates), there are existing rem-
edies. One option is to augment the data with missing observation 
times (thereby yielding sufficiently short intervals) and then inte-
grate over the missing observations during model fitting. This inte-
gration is relatively straightforward in Bayesian analysis (e.g. Gelman 
et al., 2013) and maximum likelihood analyses using expectation– 
maximisation algorithms (e.g. McLachlan & Krishnan, 2007). When 
the forward algorithm is used to maximise the likelihood directly, 
multiple imputation methods can account for the missing observa-
tions (e.g. McClintock, 2017; Rubin, 2004). These approaches are 
approximate but relatively easy to implement. The challenge with 
exact methods is that the state transition times are unknown. An 
exact but relatively difficult method to implement is the integrated 
continuous- time HMM (Blackwell, 2018), which is a Bayesian ap-
proach that utilises the efficient forward algorithm to estimate the 
whole state process together with the model parameters. Further 
development of exact methods that efficiently account for violations 
of the snapshot property is a promising area of future research.

While discrete- time HMMs for ecological data have been 
widely applied and extended in recent decades (e.g. McClintock 
et al., 2020), continuous- time HMMs have received far less atten-
tion. This is unfortunate because many types of ecological data 
are collected in continuous time, but are then ‘shoehorned’ into a 
discrete- time framework for analysis (e.g. Borchers et al., 2014; 
McClintock et al., 2014). Although they have not yet seen wide use 
by ecologists, there are several R (R Core Team, 2020) packages that 
make continuous- time HMMs readily applicable to ecological data-
sets that satisfy the snapshot property. In particular, the package 
msm includes many common observation distributions and allows 
for covariate dependence in the model parameters (Jackson, 2011). 
More recently, the package momentuHMM has been extended to ac-
commodate continuous- time HMMs, with an emphasis on observa-
tion distributions commonly used in animal movement behaviour 
models for biotelemetry data (McClintock & Michelot, 2018). Other 
options include HMMCont, which is limited to normally distributed 
observations (Beketov, 2014), and JAGS using the msm module 
(Plummer, 2017). In addition to refinements that can more effi-
ciently account for violations of the snapshot property, there remain 
many opportunities to develop continuous- time analogues to recent 
extensions of discrete- time HMMs, including semi- Markov mod-
els (e.g. Langrock & Zucchini, 2011), hierarchical HMMs (e.g. Fine 
et al., 1998, see Section 3), random effects (e.g. Altman, 2007, see 
Section 4) and covariates that vary in continuous time (e.g. Mews, 
Langrock, King, et al., 2020). Such developments will help improve 
continuous- time HMMs for ecology and facilitate their application 
to a broad range of systems and taxa.

3  | HIERARCHICALHIDDENMARKOV
MODEL S

3.1  |  Introduction

Hierarchical HMMs (HHMMs; Fine et al., 1998) extend basic HMMs 
by having multiple processes operate at different time- scales (Adam 
et al., 2019; Leos- Barajas et al., 2017). The key property of HHMMs 
is that they model multi- scale data jointly (e.g. hourly step lengths 
from GPS tags and accelerations recorded from accelerometers sev-
eral times per second), that are driven by multiple hidden Markov 
chains that evolve at different time- scales (e.g. behavioural state 
each hour and within that behavioural substate each second). They 
are already successfully applied in ecology, for example, to the dive 
behaviour of harbour porpoises (Leos- Barajas et al., 2017; Sacchi & 
Swallow, 2021), to horizontal and vertical movements of Atlantic cod 
(Adam et al., 2019) and white sharks (Aquino- Baleytó et al., 2021), 
and to the kinematic movements of northern resident killer whales 
(Sidrow et al., 2021).

In their simplest form, HHMMs have two hierarchical hidden 
processes, each of which operates at a different time- scale: (a) a 
coarse- scale (e.g. hours) hidden process St for coarse- scale time t 
and (b) a fine- scale (e.g. seconds) hidden process St,t∗ for fine- scale 
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time t∗ within coarse- scale time t. Each of these hidden processes 
has its own transition probability matrix and each can have an as-
sociated observation process for observations that occur at either 
coarse- scale or fine- scale resolution. Essentially, if the coarse- scale 
state process has N states, the fine- scale observations are modelled 
by N different fine- scale HMMs. The coarse- scale state that is ac-
tive determines which fine- scale HMM models the fine- scale obser-
vations. As the fine- scale observations do not only depend on the 
fine- scale state process but also on the coarse- scale state process, 
HHMMs can capture how switches between fine- scale behaviours 
depend on the coarse- scale behavioural mode. This added flexibility 
can then better capture how animals determine their behaviour in 
both the short and long term (Adam et al., 2019).

3.2  |  Pitfalls

Not all multi- scale data follow the dependence structure assumed 
by HHMMs. As described in Section 3.1, a central assumption is 
that the coarse- scale observations and the fine- scale observations 
are ultimately driven by a coarse- scale state process; the depend-
ence structure is thus determined by the resolution of the coarse- 
scale observations (see Figure 3 [a] for an illustration of two state 
processes that satisfy this assumption). Consider a scenario with 
coarse- scale step lengths observed once per hour and fine- scale ac-
celerations observed once per second. HHMMs assume that given 
the coarse- scale state for that hour, the accelerations during that 
entire hour arise from a single fine- scale HMM; in the next hour, the 
coarse- scale state may change and so the accelerations may arise 
from a different HMM. The important insight is that the accelera-
tions cannot arise from two different fine- scale HMMs within the 
same hour.

While this assumption is reasonable in many scenarios, it may be 
questionable in other applications. An animal can perform (moder-
ately) fast movements during the first few minutes of an hour that is, 
overall, characterised by resting behaviour, or no (slow) movements 

during the first few minutes of an hour that is, overall, characterised 
by transiting behaviour (see the red- shaded areas in Figure 3 [b] for 
an illustration of such a scenario). Similarly, the fine- scale observa-
tions are not necessarily driven by the same coarse- scale state pro-
cess as the coarse- scale observations. Accelerations can be driven 
by other behaviours than resting and transiting, which drive step 
lengths and turning angles. In both examples, multi- scale data do 
not follow the dependence structure that is assumed by HHMMs.

To show the consequences of such a violation of the depen-
dence structure, we conducted a simulation experiment (further 
details on the simulation procedure are provided in Section S2.1 of 
the Supplementary Material). Over 200 replications, we simulated 
a two- state coarse- scale process on the hourly scale with 1,000 
observations of step length and turning angle, and a two- state 
fine- scale process with 100 observations of acceleration. We then 
progressively shifted the fine- scale process by 0, 5, 10, 15 and 20 
observations and computed the percentage bias in parameter esti-
mates (full descriptions of the parameters are provided in Section 
S2.1 of the Supplementary Material). While we used deterministic 
shifts, in practice, they can also be probabilistically. In that regard, 
the deterministic shifts used for the simulation experiment can be 
thought of as being exemplary of a probabilistic shifting process with 
mean equal to the deterministic shifts and small variance. For prob-
abilistic shifting processes with large variance, or scenarios where 
the fine- scale HMMs change probabilistically within a coarse- scale 
state, we expect that HHMMs often fail to infer distinct behavioural 
modes at the fine scale, as all fine- scale behaviours occur within all 
coarse- scale states, that is, the two processes are less correlated. In 
such cases, separate HMMs for the two processes should be pre-
ferred over HHMMs. All models were fit using the R package mo-
mentuHMM (McClintock & Michelot, 2018).

Example results are displayed in Figure 4 (full results are dis-
played in Section S2.2 of the Supplementary Material). Clearly, 
when the observations were simulated as assumed by the HHMM 
(i.e. without shifting the fine- scale process), the estimates are unbi-
ased; however, the question is how severe the bias increases as the 

F IGURE 3 Illustration of the state processes of an Hierarchical HMM where the processes are aligned (a) and where this assumption is 
violated (b). A typical example for the latter scenario is an animal that performs (moderately) fast movements during the first few minutes of 
an hour that is, overall, characterised by resting behaviour, or no (slow) movements during an hour that is, overall, characterised by transiting 
behaviour (red- shaded areas). Hourly segments are indicated by vertical lines
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fine- scale state process is shifted. While the bias remains relatively 
small for small shifts, it increases sharply with shifting of the fine- 
scale process. This severe bias is due to the fact that each of the 
two fine- scale HMMs must accommodate observations within each 
hour that truly belong to the alternate fine- scale HMM: a restriction 
imposed by having an hourly coarse- scale process.

As a consequence, ecological interpretations of the state- 
dependent distributions can be difficult to elicit (in the above exam-
ple, for instance, the true within- state variance of the accelerations 
is much smaller than the estimated one, simply because of the tem-
poral regularity of the observations and the dependence structure 
of the HHMM). Furthermore, pitfalls regarding model selection, 
which are often problematic even in basic HMMs (Pohle et al., 2017), 
can be exacerbated in HHMMs. In this example, it is likely a four- 
state fine- scale process will be preferred: two to represent the true 
process and two to represent the unintended overlap of the two 
processes. This can cause misleading ecological conclusions about 
patterns in animal behaviour.

3.3  | Opportunitiesandfutureprospects

Recent advances in biologging technology have led to the ability to 
track animals for increasingly long time periods at increasingly fine 
temporal resolutions (Kays et al., 2015; Lennox et al., 2017). As these 

data are often collected by multiple sensors with different sampling 
frequencies (e.g. GPS tags, dive loggers or accelerometers), HHMMs 
provide a natural framework to jointly model these data and make 
inference on the multi- scale nature of animal behaviour depicted 
by these new types of data. However, as demonstrated in Section 
3.2, the true data- generating processes underlying these multi- scale 
data do not necessarily follow the assumed dependence structure 
and thus the model can misconstrue inference on the underlying be-
havioural processes.

To best exploit the opportunities offered by multi- scale data 
using HHMMs, more flexible dependence structures are needed. 
There are three possible approaches that future research could 
pursue: (a) estimate the optimal resolution of the coarse- scale state 
process and compute coarse- scale observations on this time inter-
val, rather than have this be determined by the sampling protocol; 
(b) develop models where switches between coarse- scale states and 
fine- scale HMMs are smoother and not a binary change; or (c) allow 
the time spent in each coarse- scale state to depend on the fine- 
scale state- switching dynamics and the fine- scale observations. If 
such extensions can overcome the problems outlined in this section, 
HHMMs have the opportunity to become a promising tool to draw a 
complete picture of animal behaviour, where an animal’s movement 
decisions made at various time- scales, ranging from seasonal migra-
tion over diurnal activity to movements of individual body parts, can 
all be modelled in a joint modelling framework.

F IGURE 4 Sample of results from the simulation experiment. Displayed is the percentage bias obtained across all 200 replications. 
The means of the accelerations under state i  associated with fine- scale HMM k are denoted by �(k)∗

i
 (panels (a) and (b)); the corresponding 

variances are denoted by �(k)∗

i
 (panels (c) and (d)). Full results are displayed in section S2.2 of the supplementary material
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4  |  RANDOMEFFECTS

4.1  |  Introduction

HMMs are often used to make inference on multiple time series of data 
where each arises from a different sampling unit (e.g. movement data 
from different animals or abundance indices from different popula-
tions). One aim in such studies is to elicit common patterns that are 
exhibited across sampling units, for example, the relationship between 
an animal’s movement and an environmental covariate.

It is common in this case to assume complete pooling of the 
parameters of the HMM for ease of interpretability, that is, one 
assumes the state- dependent distributions, the state- switching dy-
namics, and all parameters are the same across all sampling units. 
Nonetheless, ecological sampling units are often heterogeneous 
and so models that do not account for this variation can be too in-
flexible and lead to invalid inference. There are two alternatives to 
complete pooling: no pooling, where essentially one fits a separate 
HMM to each sampling unit and forgoes the ability to infer com-
mon patterns statistically, or partial pooling. Partial pooling refers to 
including random effects, either continuous valued or discrete val-
ued (McClintock, 2021; Zucchini et al., 2017), in the observation or 
state processes to account for the heterogeneity among sampling 
units. McClintock et al. (2021) conducted an in- depth simulation 
to demonstrate when inclusion of random effects on the state- 
switching process would affect inference and state prediction. For 
this reason, we focus on when random effects are included on the 
state- dependent distributions instead.

As an example, consider the garter snake movement dataset in 
Leos- Barajas et al. (2017) where a time series of observed distances 
moved was recorded for multiple snakes. Suppose a priori we ex-
pect three underlying states, but know the movements under these 
states may vary by snake. We can model these data as a three- state 
HMM where the state- dependent distributions are gamma distribu-
tions with mean �i,n and standard deviation �i,n for states n = 1,2,3 
and snakes i = 1, … ,K. For complete pooling, one would assume 
�1,n = �2,n = … = �K,n for all n (and similarly for �). For no pooling, 
one would estimate each mean and standard deviation separately 
for each snake and state. For partial pooling, one could assume a 
hierarchical model where there is a population- level parameter, for 
example, �n for state n, and each snake’s individual- level parameter 
varies around this population- level mean with some standard devi-
ation �n for state n, that is, �k,n ∼ N

(
�n�n

)
. This is the simplest way 

to partially pool across individuals, but it can lead to an unexpected 
pitfall: the added flexibility can overfit to certain individuals and 
make interpretation of the underlying states at the population- level 
difficult.

4.2  |  Pitfall

At present, when including random effects in HMMs, two key as-
sumptions are implicitly made (i) the K individual time series exhibit 

the same number of distinct states N and (ii) the ecological inter-
pretation of the states is consistent across sampling units. That is, 
state n across all individuals should be comparable and serve as a 
proxy for the same latent ecological behaviour. However, in practice, 
there is seldom a way to know a priori if all individuals exhibited 
the same number of states during the period of their observation or 
if the states are estimable given the data collected. Random effect 
modelling, as currently developed for HMMs, can account for indi-
vidual heterogeneity, but does not have any theoretical grounding to 
prevent their accommodation of this heterogeneity from deforming 
interpretation of the population- level states. Even when the model 
assumed is correct, one may be unable to recover the true parameter 
values (see Section S3 of the Supplementary Material).

This is a key pitfall in HMMs. The difficulties that arise when ac-
counting for individual heterogeneity in the state- dependent distri-
butions stem from a lack of estimability and interpretability of the 
states across individuals. Thus, as it stands, partial pooling may not 
allow researchers to understand individual heterogeneity exhibited 
in the population of interest by simply incorporating random effects 
as this can lead to inaccurate inference due to a lack of estimability 
of the state- dependent parameters.

For the garter snake movement example, Figure 5 displays 
the estimated state- dependent distributions of four snakes, along 
with 95% pointwise credible intervals, for the model with com-
plete pooling and partial pooling of the means. Estimated state- 
dependent distributions for all snakes are provided in Section S3 of 
the Supplementary Material. Across both models, the population- 
level estimates of the state- dependent distributions demonstrate 
three distinct states (more details in Leos- Barajas et al. (2017)), yet 
there are clear differences (especially in state 2) indicating the possi-
ble importance of accounting for individual variation. However, the 
individual- specific state- dependent distributions in the partial pool-
ing model demonstrate crucial differences which are challenging 
to address. For example, for many individuals (e.g. snakes 1 and 18) 
there is a large overlap between state 1 and state 2 distributions, for 
example, �k,2, for k ∈ {1 … K}, have lower bounds as small as 0.04, 
compared to a 95% credible interval for �2 of (0.11, 0.20). This raises 
a question: are we capturing true differences across states in indi-
viduals, or are we overfitting, or are the individual- specific param-
eters not estimable? At present, there is no mechanism in random 
effect modelling for HMMs to address this question without simply 
making more assumptions.

4.3  | Opportunities

Inclusion of random effects in a HMM provides opportunities to 
learn about individual heterogeneity, personality and preference 
within a given population of interest. However, we demonstrate 
that even under correct model specification, a HMM with random 
effects in the observation process may not be able to recover the 
true individual- specific state- dependent distributions and can lead 
to biased inferences for the state- switching dynamics (see Section 
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S3 of the Supplementary Material). As such, one opportunity is to 
understand under which experimental designs a HMM with random 
effects is estimable.

In addition to tackling the issue of estimability, another oppor-
tunity is to develop methodology that better respects the usual aim 
of using a HMM: to discern individual- specific state- dependent dis-
tributions that are different enough from one another across states 
and are coherent with the population- level inference. In Figure 5, 
the densities for state 1 and 2 have more overlap than is present 
in the population- level estimates, even when the aim is to capture 
three distinct states. Enforcing these criteria may be possible via se-
lection of informative prior distributions, if inference is conducted 
in a Bayesian framework, or appropriate regularisation, constructed 
through the elicitation of domain expertise. For instance, one pos-
sibility is to assign an informative prior on the difference between 
�n+1 − �n, for n ∈ {1 … N − 1}, in order to enforce separation be-
tween densities.

If further research into the methodological development of 
HMMs with random effects proves to provide robust results for a 

variety of real- world data collection scenarios, it opens up the op-
portunity for HMMs to provide insights into individual- specific 
movement dynamics and how distinct animal behaviours manifest 
across a population.

5  |  CONTINUOUSSTATESPACES

In a HMM, the underlying state St takes one of a finite number of 
values; however, HMMs can be used for approximate inference when 
St varies over an infinite number of states (Zucchini et al., 2017). 
Models where St varies in a continuous state space are called 
‘state space models’ (SSMs; Auger- Méthé et al., 2021). The con-
nection between state space models, hidden Markov models, and 
discretisation is well known (Anderson- Sprecher & Ledolter, 1991; 
Kitagawa, 1987). In ecology, the approximate HMMs are used to 
model animal movement (Pedersen et al., 2011), population dynam-
ics (Besbeas & Morgan, 2019), distance sampling sightings (Glennie 
et al., 2021), missing continuous covariates in capture– recapture 

F IGURE 5 Estimated state- dependent 
distributions, unweighted, for models with 
complete pooling (a) and partial pooling (b) 
of the state- dependent means, along with 
95% pointwise credible intervals
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(Langrock & King, 2013) and for moving activity centres in spatial 
capture– recapture (Glennie et al., 2019). Yet, the method remains an 
obscurity for many ecological statisticians, for example, Patterson 
et al. (2017), in a review of animal movement modelling, described 
it as ‘underutilised’.

In this section, we describe the ideas involved when approxi-
mating a SSM with a HMM, the current pitfalls of this method, and 
the opportunities improving this method can bring to ecological 
applications.

5.1  |  Example

In this section, we provide an example of constructing an ap-
proximate HMM for a continuous- time, state- switching animal 
movement SSM. This is to introduce the reader to the important 
ideas behind this method. The idea is to break the continuous 
hidden state in the SSM into a discrete, binned state for a HMM. 
We use continuous- time, state- switching animal movement with 
Brownian motion as an example (Pedersen et al., 2011), where the 
data consist of observations of the animal’s location over (possibly 
irregular) time. We assume an animal has two latent behavioural 
states and the diffusion rate depends on its behaviour. The hidden 
variable in this SSM is the animal’s location in 2D space coupled 
with its behavioural state. Figure 6 (Panel b) shows an example 
where 2D space has been split into a 5 × 2 grid. The approximate 
HMM will have 20 hidden states in this case as each hidden state 
represents where the animal is on the 2D grid and what behaviour 
the animal is in.

Once the states are defined for the HMM, the transition proba-
bility matrix or, if working in continuous time, transition rate matrix 
is defined. The transition probabilities must be derived from the pa-
rameters and state process in the SSM. If one can compute from the 
SSM the transition probabilities in continuous space (as in Mews, 
Langrock, Ötting, et al., 2020) then one can compute the transition 
probabilities directly in the discrete space. However, this is not al-
ways possible, for example, with spatially varying SSMs or state- 
switching SSMs. Following Pedersen et al. (2011), we can derive a 
transition rate matrix for the HMM that mimics the state process of 
the SSM using a partial differential equation (PDE; e.g. see Okubo 
& Levin, 2001). There are several methods (e.g. finite differencing, 
finite volume or finite element) to convert this PDE into a transition 
matrix (Quarteroni & Valli, 2008). The parameters of the SSM de-
termine the switching rates for the approximating HMM. Figure 6 
(Panel a) shows an example of a derived transition rate matrix for a 
behaviour- switching Brownian motion model on the 5 × 2 grid. Note 
that for most PDE methods the derived transition matrix is sparse 
(i.e. most of its entries are zero).

Once the transition matrix over the grid is specified, one can fit 
the approximate HMM in the usual way and estimate the param-
eters of the SSM. Figure 6 (Panel c) shows two examples of using 
a derived transition rate matrix to update the probability distribu-
tion over the 2D- behaviour space. Section S4 of the Supplementary 

Material provides a full example of building HMM approximations 
from PDEs, including all code for constructing the necessary matri-
ces and computing the likelihood.

5.2  |  Pitfalls

The biggest pitfall to using approximate HMMs to fit SSMs is the 
curse of dimensionality. For higher dimensional hidden processes 
(e.g. where an animal’s location and velocity are both hidden, a 
four- dimensional space), the number of states in the HMM quickly 
becomes computationally infeasible. For animal movement models, 
this inhibits the maximum number of behavioural states one can con-
sider and precludes the possibility of incorporating directional per-
sistence. For population dynamics, this limits the number of groups 
in age- structured models. Although this curse is unavoidable, future 
research could alleviate it: irregular gridding of the latent space 
can focus inference on important parts (Pedersen & Weng, 2013), 
only parts of the space can be updated when necessary, parallel-
ised sparse matrix– vector products and sparse matrix exponential 
methods can be more fully exploited (Sherlock, 2021; Sidje, 1998), or 
sparse grids can reduce the number of states without compromising 
accuracy (Garcke, 2012). Many of these proposed ideas for future 
research have direct analogy with extensions of simulation- based 
methods.

The second pitfall is encountered when deciding whether to 
compute the transition probabilities directly or by PDE. Both have 
limitations. The direct approach requires a known solution to the 
SSM and, for large state spaces, a threshold be set such that tran-
sition probabilities below that threshold are taken to be zero as 
computing all pairwise transition probabilities is infeasible. The 
PDE approach has the advantage that the transition rate matrix’s 
sparsity is fixed no matter the time interval between observations 
and no thresholding is necessary; however, the PDE approach 
is, at present, limited to SSM with Gaussian state processes and 
requires one to compute a sparse matrix exponential. Future re-
search is needed to expand one or both of these approaches to a 
wider range of SSMs.

The final pitfall concerns the PDE approach in particular. The 
transition rate matrix is derived using PDE techniques from ap-
plied mathematics. These techniques are designed to compute an 
accurate solution to the PDE given the parameters are known. In 
ecological applications, however, the aim is different: to compute 
the solution many times and to determine the optimal parame-
ters for the PDE given the data. Some techniques suitable for 
the former purpose may be subtly unsuitable for the latter, for 
example, when dealing with artificial diffusion or cross- diffusion 
(Quarteroni & Valli, 2008). In Section S4.4 of the Supplementary 
Material, we show an example of this problem for directed animal 
movement. Future research should consider the effect this may 
have on inference: most applications of the PDE method in ecol-
ogy have investigated the efficacy of state prediction and not pa-
rameter recovery (Gatti et al., 2021).
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5.3  | Opportunities

This method could have wide application in ecology if future re-
search into its pitfalls led to improved computational and statistical 
implementation. To show this, we consider three areas where this 
method has shown some promise, but could be further exploited: 
animal movement, population dynamics and encounter modelling.

For animal movement, our example described one possible 
approach (Pedersen et al., 2008; Pedersen et al., 2011; Thygesen 
et al., 2009). It continues to be used (Braun et al., 2018; Haase 
et al., 2021; Jonsen et al., 2013), but only in limited contexts (fo-
cusing on light- based geolocation). Despite this, the flexibility of 
the HMM approach offers solutions to many common modelling 
needs that arise with animal telemetry: non- Gaussian, multivariate 
observations are easily accommodated, unlike common alterna-
tives based on Kalman filtering (Johnson et al., 2008); continuous- 
time behaviour- switching can be accounted for and inference on 
where, not just when, behaviours are exhibited is possible (Pedersen 
et al., 2011), while alternatives make it more difficult to make this 
connection (see Section 6); barriers and obstacles to movement 
(e.g. land for marine animals) are trivially accounted for, while this 
remains difficult for simulation- based techniques; and environmen-
tal covariates can drive step- selection in continuous time, similar 

to continuous- time discrete- space models (Hanks et al., 2015), but 
with flexibility to include behaviour- switching and link movement to 
a continuous- space model.

For population dynamics, De Valpine and Hastings (2002) intro-
duced a discrete- time HMM approximation to general state- space 
population dynamics models. Besbeas and Morgan (2019) and 
Besbeas and Morgan (2020) generalise the approach and make the 
connection to HMMs explicit. These approaches differ from the 
example in Section 5.1: they do not consider continuous time and 
compute transition probabilities directly rather than via a PDE. The 
advantage of the HMM approach is the ability to model nonlinear 
dynamics that the standard Kalman filter cannot accommodate. It 
also allows for multivariate observations on population dynamics to 
be incorporated into a single model. Note that the state- switching 
models, continuous- time modelling or sparse matrix algorithms, all 
present in the animal movement applications of this method, are yet 
to be fully explored for population dynamics models.

For encounter models, we refer to applications where animal 
movement is inferred from encounters animals have with detectors, 
for example, human observers, cameras or acoustic devices. The ap-
proximate HMM is easily extended to allow for custom detection 
models. As with telemetry data, these detections can be used to 
infer individual animal movement (Dorazio & Price, 2019; Pedersen 

F IGURE 6 Example of hidden Markov model for state- switching animal movement over 2D (x, y) space: (a) the transition rate matrix 
derived from the continuous- space, continuous- time partial differential equation model (Pedersen et al., 2011) where non- zero entries are 
coloured and some rows and columns are numbered to indicate what grid cell in 2D- behaviour space (panel [b]) they refer to, solid lines 
demarcate blocks of the matrix corresponding to different behavioural states and dotted lines demarcate blocks corresponding to grid cells 
with different y values; (b) the 2D- behaviour space the transition rate matrix corresponds to, with two behavioural states, each with five grid 
cells in the x direction and two in the y direction, each grid cell is numbered and has colouring to depict the initial distribution of an animal 
over this space (here the animal is in grid cell 3 in behaviour 1 with probability 1) and the predicted distribution of the animal’s location after 
one time unit (greater transparency indicates less probability mass); (c) a numerical example with one behavioural state using a higher grid 
resolution with an initial distribution of the animal in a single grid cell with probability 1 and the predicted distribution one time unit later 
under 2D Brownian motion, see section S4 of the supplementary material for the code to compute this approximation
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& Weng, 2013). Yet, more powerfully, these individual animal move-
ment models can be incorporated into population- level models such 
as distance sampling or spatial capture– recapture (e.g. McClintock 
et al., 2021). In each of these methods, a critical quantity is the prob-
ability any given animal in the population could be detected. When 
animals can move, this detection probability is calculated by aver-
aging over all the possible (yet unobserved) paths an individual an-
imal could have travelled. This is precisely the quantity the forward 
algorithm for HMMs can be used to compute. This approach has 
been taken to incorporate animal movement into both distance sam-
pling (Glennie et al., 2021) and spatial capture– recapture (Glennie 
et al., 2019). Furthermore, this method provides the opportunity to 
build a general statistical approach to encounter modelling (Gurarie 
& Ovaskainen, 2013).

6  |  SPATIALANALYSISANDSPATIAL
INTERPRETATIONOFDECODEDSTATES

Inferring the behavioural state of an animal based on telemetry 
data is an increasingly popular application of HMMs in ecology. 
Telemetry data are primarily made up of geographical locations, 
which are inherently spatial, and HMMs for such data often char-
acterise animal movement as a time series of steps and turns (e.g. 
Langrock et al., 2012), either on the plane (2D) or in a volume (3D). 
Inferences from movement HMMs can therefore assign behavioural 
states to spatial locations, which can be visualised in space by plot-
ting the predicted state assignments on a map. Under these basic 
HMMs, the model is blind to the spatial mechanisms that give rise to 
certain behaviours. The spatial locations of the decoded states are 
therefore irrelevant to the model, but highly relevant to the ecologi-
cal application, and the ecological interpretation of decoded states. 
A common extension to bring spatial mechanism into the model is to 
incorporate spatial covariate effects on the transition probabilities 
or parameters of the state- dependent observation distributions (e.g. 
Langrock et al., 2012; McClintock et al., 2012; Morales et al., 2004; 
Mul et al., 2020; Rivest et al., 2016). This creates an explicit link 

between space and movement behaviour. The pitfall, however, with 
this approach is that the appropriate structure for a given research 
question can quickly lead to a model that is very complex, has a large 
number of parameters, and whose results are difficult to interpret. 
For these reasons, an attractive alternative is a two- stage approach, 
where a relatively simple HMM is first used to get state assignments 
for spatial locations, and post- hoc analyses are conducted to infer 
the relationship between the states and the spatial context in which 
they occur (e.g. Breed et al., 2009; Nickel et al., 2021). Although this 
is a simpler approach, there has been little research into how best to 
build a statistically robust and rigorous two- stage model.

To illustrate the pitfall in using HMMs to make spatial inferences 
and spatially interpreting the decodes states, we present a case 
study where HMMs were used to make inferences about animal 
movement from tracking data, and secondary spatial analyses were 
carried out to address specific spatial, ecological and behavioural 
questions.

6.1  |  Pitfallexample:Dohummingbirdsuse
landmarks to remember spatial locations?

The movement trajectories of 14 rufous hummingbirds Selasphorus 
rufus were recorded in three- dimensions during a field experiment 
(Westcastle Valley, Canadian Rockies, Alberta, Canada, May– July 
2014) to investigate spatial memory and learning. The data (step 
length, pitch angle, yaw angle) were analysed in (Pritchard et al., 2021) 
using a HMM, with distance to the location where a flower- shaped 
feeder was previously situated, and the presence or absence of land-
marks, as covariates on the transition probability matrix.

The objective of the study was to gain a better understanding of 
how hummingbirds learn rewarding spatial locations, and as such there 
was an interest in where, with respect to the feeder and landmarks, 
certain movement behaviours occurred, as illustrated in Figure 7. 
Knowing if birds were more likely to display targeted searching be-
haviour in particular parts of space would allow inferences about what 
specific features were learned and remembered. Hypothesis tests 

F IGURE 7 The spatial distribution of locations assigned the searching state for naive birds, who only had one prior visit to the feeder 
(asterisk) before it was removed, and experienced birds who had several prior visits. The black squares mark the location of two artificial 
landmarks that were present during the experiment, while the feeder had been removed. the colour brightness gives the state probability, to 
convey uncertainty in state assignments
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(t- tests) were carried out to determine whether inferred searching 
state locations and stops made by experienced birds (with several 
prior visits to the feeder in the presence of landmarks) were closer to 
the feeder location than would have been expected by chance, com-
pared to naive birds with a single prior visit. While this is a reasonable 
approach and provides some insight into where behaviours occur, it 
does not fully utilise the information contained in the spatial distri-
bution of states, or account for uncertainty in the state assignments.

6.2  | Opportunities

This pitfall is at odds with what many, if not most, ecological and 
conservation science studies want to achieve when analysing te-
lemetry data: an understanding of why behaviours occur where 
they do. In addition, the most easily implemented conservation and 
management interventions are often place based, for example, ma-
rine protected areas. To inform place- based management decisions 
with inferences from movement HMMs, we must be able to identify 
both important habitat (e.g. stop- over sites) and the behaviour(s) 
associated with it (e.g. migration). This is key for identifying what 
parts of space have disproportionate functional value to an animal 
population and deserve further protection or management (Lennox 
et al., 2019). Extending the use of HMMs to better answer these 
questions or promoting alternative methods will have widespread 
impact on conservation practice, feeding into policy and manage-
ment decisions about place-  and time- based conservation of wildlife, 
as well as their spatial and temporal exposure to risk.

There are two questions any such proposed extension must ad-
dress: (a) How can spatial inference on behavioural state be made rig-
orously and robustly? (b) How can uncertainty in state be accounted 
for? For HMMs, future research could consider a more refined two- 
stage approach (e.g. taking predicted states, or, repeatedly drawing 
from the predicted state probabilities from a HMM and then per-
forming spatial analyses), implementing carefully thought- through 
spatio- temporal transition probability matrices and/or observation 
distributions where interpretability permits, or exploiting the exist-
ing ability to make spatial inference with continuous- space HMMs (as 
described in Section 5). In the hummingbird example, the spatial re-
search question could have instead been addressed within the HMM 
by including an interaction term between level of experience and dis-
tance to the flower on the state transitions. It is possible, however, 
that alternative, explicitly spatial methods, such as continuous- time 
discrete- space models (Hanks et al., 2015) or Langevin diffusion mod-
els (Michelot et al., 2019), could be extended to multiple behavioural 
states, thereby yielding state- specific utilisation distributions that 
could inform behaviour-  and place- based management decisions. 
Such extensions could be embedded within the continuous- time 
HMM framework by formulating the observation distribution accord-
ingly, possibly using a discrete- time approximation [e.g. Equation (S1) 
in Section S1.1 of the Supplementary Material], as has been recently 
done (e.g. momentuHMM version 2.0.0; McClintock & Michelot, 2018).

7  |  CONCLUSION

Hidden Markov models are a versatile class of models that will 
continue to be developed for and applied to ecological problems. 
In this review, we have highlighted capabilities of HMMs that 
could be fruitful for ecological applications, but where one must 
be aware of current statistical and computational pitfalls. HMMs 
are becoming more complex in structure to better realise the po-
tential of the more heterogeneous, multi- scale, multi- dimensional 
data being collected and the more detailed research questions 
being asked. This can make HMMs a valuable tool to capture a 
wide variety of observations, to model multiple processes act-
ing at difference scales, to describe individual and population- 
level effects, and to link state- switching to space as well as time. 
With these developments, however, come greater difficulties in 
interpreting these models, justifying their assumptions, and fit-
ting these models with current computational capabilities. We 
hope this paper heightens awareness of the trouble more com-
plex models can bring and what opportunities for future solutions 
these problems can inspire.
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