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1  |  INTRODUC TION

Step selection functions (SSFs) are increasingly used to describe an-
imal movement and habitat selection (Avgar et  al.,  2016; Forester 
et al., 2009; Rhodes et al., 2005). An SSF measures how an animal 
selects habitat at the scale of the observed movement step, while 

simultaneously estimating distributions of step lengths and turn-
ing angles. Compared to landscape-level habitat selection models 
(e.g. resource selection functions; RSFs), the temporal structure 
of SSFs better accounts for autocorrelation in animal tracking 
data. SSFs also make it possible to assess time-varying patterns 
of selection (Forester et  al.,  2009; Richter et  al.,  2020) as well as 
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Abstract
1.	 Step selection functions (SSFs) are used to jointly describe animal movement 

patterns and habitat preferences. Recent work has extended this framework to 
model inter-individual differences, account for unexplained structure in animals' 
space use and capture temporally varying patterns of movement and habitat 
selection.

2.	 In this paper, we formulate SSFs with penalised smooths (similar to generalised 
additive models) to unify new and existing extensions, and conveniently imple-
ment the models in the popular, open-source mgcv R package.

3.	 We explore non-linear patterns of movement and habitat selection, and use the 
equivalence between penalised smoothing splines and random effects to im-
plement individual-level and spatial random effects. This framework can also 
be used to fit varying-coefficient models to account for temporally or spatially 
heterogeneous patterns of selection (e.g. resulting from behavioural variation), 
or any other non-linear interactions between drivers of the animal's movement 
decisions.

4.	 We provide the necessary technical details to understand several key special 
cases of smooths and their implementation in mgcv, showcase the ecological rel-
evance using two illustrative examples and provide R code to facilitate the adop-
tion of these methods. This paper offers a broad overview of how smooth effects 
can be applied to increase the flexibility and biological realism of SSFs.
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movement-habitat interactions that may be associated with be-
havioural patterns or landscape resistivity (Avgar et al., 2016). Their 
dynamic formulation makes them an important tool for predicting 
animal space use, with methods recently developed to scale SSF 
results to large-scale distributions (through simulations and math-
ematical methods; Potts & Börger, 2022; Signer et al., 2017, 2024). 
Therefore, to best understand animal spatial ecology, many meth-
odological extensions of SSFs have been proposed to improve their 
biological realism and flexibility.

One important focus of SSF research has been to relax the com-
mon assumption that the parameters driving movement and habi-
tat selection are constant through time, to account for behavioural 
variation. This can for example be done with hidden Markov mod-
els, where animals switch between behavioural states, each charac-
terised by different patterns of movement and habitat preferences 
(Klappstein et  al.,  2023; Nicosia et  al.,  2017; Pohle et  al.,  2023). 
Another approach is to include interaction effects within an SSF, 
to specify covariate-dependent selection parameters. For example, 
habitat selection can vary with time (Forester et al., 2009; Richter 
et  al.,  2020), and movement speed can change with environmen-
tal resistivity (Avgar et al., 2016). Although this approach does not 
explicitly model behavioural switching, it provides a very flexible 
framework to capture time-varying movement and selection pat-
terns. This method could be further extended to allow for non-linear 
habitat preferences and non-linear interaction effects (e.g. seasonal 
selection patterns). These ideas have been explored for RSFs (e.g. 
Dejeante, Valeix, & Chamaillé-Jammes, 2024; McCabe et al., 2021), 
but not yet for SSFs, which have the ability to assess variability in 
both habitat selection and movement.

Another direction of recent research has been to include ran-
dom effects in SSFs, to capture variability otherwise unexplained 
by the model. Random slopes have been explored to account for 
inter-individual variability in movement and habitat selection pat-
terns, attributable to animal ‘personality’ and affected by pheno-
typic plasticity (Chatterjee et al., 2024; Duchesne et al., 2010; Muff 
et al., 2020). Similarly, spatial random effects can help account for 
spatial pattern or variation not captured by other environmental co-
variates (Arce Guillen et  al.,  2023). This unexplained spatial varia-
tion could reflect an unmeasured driver of movement (e.g. predation 
risk, conspecific interactions) or centres of attraction (e.g. kill sites, 
dens), which if unaccounted for, may bias selection parameters for 
other covariates. In this paper, we will use a very general definition 
of random effects that includes penalised smooths, which have great 
flexibility in capturing spatial, group-level and temporal variation in 
movement and selection patterns (Hodges, 2014; Wood, 2017).

It is most common to implement SSFs using software for fit-
ting conditional logistic regression models (Signer et  al.,  2019; 
Therneau,  2022). Typically, this approach has been limited to rel-
atively simple log-linear models (although see survival for non-
linear p-spline implementation; Therneau,  2022). The extensions 
mentioned above have been implemented using custom code or var-
ious software packages, such as inlabru for spatial random effects 
(Arce Guillen et  al.,  2023) and glmmTMB for random slope models 

(Muff et al., 2020). However, the increasing diversity of methodolog-
ical extensions and implementation methods can present a challenge 
for practitioners, and it may not be easy to explore model formula-
tions in the same inferential framework.

In this paper, we explain how an SSF can be formulated as a ‘gen-
eral smooth model’ (a generalised additive model (GAM) without an 
exponential family distribution; Wood et al., 2016), and can conve-
niently be implemented in the popular R package mgcv. In mgcv, a 
wide range of smooth models can be specified using a convenient 
formula syntax, and fitted via likelihood-based methods such as re-
stricted maximum likelihood. This framework greatly increases the 
flexibility of current SSF models, and we will focus on the following: 
(i) modelling non-linear patterns of selection and non-parametric 
movement kernels, (ii) capturing inter-group variability (i.e. random 
slopes and hierarchical smooths), (iii) accounting for unexplained 
spatial variation via spatial random effects and (iv) assessing selec-
tion patterns that change through time and/or space using varying-
coefficient models. We will show that this implementation provides 
a unifying framework to fit, compare and contrast complex SSF for-
mulations with non-linear and random effects.

2  |  GENER AL MODEL FORMUL ATION 
AND IMPLEMENTATION

2.1  |  Step selection functions

Consider a track of two-dimensional animal locations 
{
s1, s2, … , sT

}
 

collected at regular time intervals. In an SSF, the likelihood 
of a step ending at location st+1 given the previous locations 
s1:t =

{
s1, s2, … st

}
 is

where w measures habitat selection, � describes the movement pat-
terns of the animal, and Ω is the study area (Forester et  al.,  2009; 
Rhodes et  al.,  2005). The denominator is a normalising constant, 
such that Equation  (1) is a probability density function with respect 
to the endpoint of the step, st+1. Note that some SSFs do not esti-
mate movement jointly with habitat selection (e.g. Fortin et al., 2005), 
but we focus on SSFs where both � and w are estimated (sometimes 
termed an ‘integrated’ SSF; Avgar et al., 2016; Forester et al., 2009). 
In this case, it is most common to define both components as log-
linear models. Then, the habitat selection function is defined as 
w
(
st , st+1

)
= exp

{
�⊤
h
ch

(
st , st+1

)}
 where ch

(
st , st+1

)
 is a vector of hab-

itat covariates with associated coefficients �h. Likewise, the movement 
kernel is commonly written as 𝜙

(
st+1 |s1:t

)
= exp

{
�⊤
m
cm

(
s1:t , st+1

)}
 

with movement covariates cm
(
s1:t , st+1

)
 and coefficients �m. The 

two exponential functions can be factorised, such that Equation  (1) 
becomes

(1)p
(
st+1 |s1:t

)
=

w
(
st , st+1

)
�
(
st+1 |s1:t

)

∫
r∈Ω

w
(
st , r

)
�
(
r |s1:t

)
dr

,

(2)
p
(
st+1 |s1:t

)
=

exp
{
�⊤c

(
s1:t , st+1

)}

∫
r∈Ω

exp
{
�⊤c

(
s1:t , r

)}
dr

,
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where c
(
s1:t , st+1

)
=
(
ch

(
st , st+1

)
, cm

(
s1:t , st+1

))
 and � =

(
�h,�m

)
. 

Note that this model does not include an intercept, as this would 
not be identifiable (Manly et al., 2002). Typically ch

(
st , st+1

)
 will in-

clude spatial covariates (e.g. foraging resources, proxies of risk, 
etc.), and the parameters �h measure the animal's selection for 
(positive coefficients) or avoidance of (negative coefficients) these 
environmental features. A common movement model is the cor-
related random walk, and it can be implemented within the SSF 
framework by including specific functions of the step length and 
turning angle as covariates in cm (Avgar et  al.,  2016; Duchesne 
et  al.,  2015; Forester et  al.,  2009). The coefficients �m are then 
related to the parameters of the estimated distributions of the 
movement variables. This approach can be used to model turn-
ing angles with a von Mises distribution (Duchesne et al., 2015), 
and there are several options for step lengths, including the ex-
ponential, gamma, log-normal and Weibull distributions (Avgar 
et al., 2016; Forester et al., 2009). SSFs can also include interac-
tion terms (i.e. covariate-dependent coefficients) to capture spa-
tiotemporal variation in movement or habitat selection patterns 
(Avgar et al., 2016; Forester et al., 2009; Richter et al., 2020). To 
emphasise flexibility, we write the SSF conditional on all previous 
locations s1:t; in practice, it usually only depends on the two previ-
ous locations st−1 and st, which are used to derive the step length 
and turning angle.

The normalisation constant of the SSF (i.e. the integral in the 
denominator) is analytically intractable, and a common approach is 
to approximate the integral as the sum of function evaluations at 
random points from some distribution h (Michelot et al., 2024). This 
approximation is nearly likelihood-equivalent to conditional logisitic 
regression (CLR), and it can be convenient to re-write the SSF as 
such. That is, in this approach, we restrict the animal's movement 
choices to the random and observed points, and we can write the 
model in terms of the covariate values at these discrete choices. We 
define a stratum as the observation and random points at each time 
t. Then Xt is the design matrix, with columns for evaluations of c (i.e. 
habitat and movement variables) and one row for each location in 
the t-th stratum (i.e. the observation and the N random locations). 
Assuming the number of random points N is constant over all strata, 
we can approximate the SSF by

where xit is the row of Xt indexed by i , and

Note that in Equation  (3), we include the observation in the de-
nominator, and therefore the sum is over N + 1 points (Forester 
et al., 2009). Also, we temporarily ignored the distribution of ran-
dom points h, and we must account for our sampling via a post 

hoc correction or ‘update’ to the parameters (Avgar et al., 2016; 
Forester et  al.,  2009). Typically random points will be sampled 
from step length and turning angle distributions derived from the 
empirical data (see Section  3.1 for details on sampling and cor-
rections). This approach allows the SSF to be fitted using existing 
software for CLR (Avgar et  al.,  2016; Forester et  al.,  2009), and 
there are several options for log-linear SSFs, including the R pack-
ages survival (Therneau, 2022) and glmmTMB (Muff et al., 2020). 
Here, we recognise that Equation (3) is also likelihood-equivalent 
to a special case of a Cox proportional hazards (Cox PH) model (see 
Appendix  A for details) and can therefore be fitted in the mgcv 
package. This is the same equivalence utilised in survival, where 
CLR can be fitted with clogit as a wrapper to cox.ph function. 
Implementation in mgcv as a GAM-like general smooth model al-
lows for more flexible formulations with both non-linear and ran-
dom effects, with model complexity controlled by a data-driven 
penalty. We describe this modelling framework next.

2.2  |  SSFs with smooth effects

Equation (3) can be extended to include both ‘conventional’ random 
effects (e.g. random slopes) and non-linear functions, which we will 
collectively call ‘smooth’ terms following the terminology used for 
GAMs (Wood, 2017). We write the general model as

where Xt is the design matrix of fixed effect (unpenalised) terms 
and Zt is the design matrix of smooth terms for the stratum t  (with 
i-th row zit). In this mixed effect formulation, � is the vector of 
fixed effects and � is the vector of random effects, assumed to 
follow a multivariate normal distribution with covariance ma-
trix �. The choice of a normally distributed � is sometimes de-
scribed as a prior, reflecting our belief about the random effect 
variance or function smoothness (which unperpins a Bayesian 
view of smoothing and uncertainty quantification; Kimeldorf & 
Wahba, 1970; Miller, 2021). If Zt represents basis functions from 
a single smooth term, then the covariance matrix in Equation  (5) 
is given by � = S

− ∕�, where S is called the penalty matrix of the 
smoother (with pseudo-inverse S−) and � is a smoothing parameter. 
If Zt includes more than one smoother or smoothers are penalised 
by multiple terms, then �− will be a block-diagonal matrix, with the 
penalty matrices multiplied by penalty-specific smoothing param-
eters on the matrix diagonal (Wood, 2017).

Equation (5) is very flexible, as mixed effect models provide a con-
venient framework to describe not only inter-group heterogeneity (e.g. 
using random slopes) but also non-linear effects using penalised splines 
and spatial dependence via random fields (Hodges, 2014; Michelot, 2023; 
Wood, 2017). These formulations correspond to different choices of the 
covariates in the model matrix Zt and of the penalty matrix S (and there-
fore the covariance matrix �). We describe random slopes and random 

(3)Pr
�
yit = 1 �Xt

�
=

exp
�
�⊤xit

�
∑N

n=0
exp

�
�⊤xnt

� ,

(4)yit=

⎧
⎪⎨⎪⎩

1 if the i-¬th point in stratum t is the observed location,

0 otherwise.

(5)Pr
�
yit = 1 �Xt ,Zt

�
=

exp
�
�⊤xit + �⊤zit

�
∑N

n=0
exp

�
�⊤xnt + �⊤znt

� and � ∼ N(0,�),
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    |  1335KLAPPSTEIN et al.

intercepts as ‘conventional’ random effects, but note that throughout the 
paper we use the term random effects more generally to also describe 
other smooth effects. Next, we will formalise this equivalence between 
conventional random effects and penalised smooths, and explain their 
uses within the SSF framework (see Figure 1 for a summary of key ex-
amples). Throughout, we denote a linear predictor for the i-th location of 
stratum t as 𝜂it = �⊤xit + �⊤zit (as in Equation 5).

2.2.1  |  Conventional random effects

‘Conventional’ random effects, which are used to capture differences 
between individuals or groups, are perhaps the simplest special case 
of the mixed effect model in Equation (5). SSFs lack an intercept, and 
so we will focus on defining a model with random slopes to capture 
variability in habitat selection or movement patterns (Chatterjee 

F I G U R E  1  Summary of smooth effects discussed in this paper. ‘Model description’ explains the form of the smooth effect, which is 
demonstrated visually in the example plot (in which RSS is the relative selection strength). The mgcv syntax only refers to the relevant term 
in the model formula, where s() denotes a smooth function, bs is the basis function type, and by is used to specify interactions. Further 
details of each effect can be found elsewhere in the paper and appendices.
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1336  |    KLAPPSTEIN et al.

et al., 2024; Muff et al., 2020). The linear predictor of an SSF with 
independent random slopes for a covariate x takes the form,

with random effect levels j ∈ 1, 2, … ,K. In this case, each zit in 
Equation (5) is zero when the observation is not part of the j-th random 
effect level (and zit = xit when it is). The penalty matrix of the i.i.d. ran-
dom effects is the identity matrix (S = I), leading to the random effect 
distribution � ∼ N

(
0, �2

�
I

)
, where �2

�
= 1∕�. That is, the smoothing 

parameter � is inversely related to the variance of the random effects; 
a large value of � corresponds to a small value of �2

�
 and thus, shrink-

age of individual or group-specific parameters toward the population 
mean.

2.2.2  |  Smooth effects

To include a wide range of non-parametric movement and habitat 
terms, it is possible to model non-linear functions (e.g. penalised 
splines, Gaussian processes) as random effects. We define a single-
penalty smooth function of some covariate u as

where the Ψk are simple mathematical functions called ‘basis func-
tions’, weighted by the coefficients �k (see Figure 2 for an example; 
Hefley et al., 2017; Pedersen et al., 2019; Wood, 2017). In Equation (7), 
the penalty matrix is determined by the choice of smoothing basis, 
and the smoothness of the function (i.e. the degree of penalisation) 
is controlled by �. When � is high, this indicates low covariance of the 
basis coefficients, such that adjacent basis function evaluations are 
more similar, resulting in a smoother function (Figure 2). In contrast to 
simpler polynomials and regression splines with complexity specified 

a priori, we estimate � from the data to control the trade-off between 
model fit and complexity.

This approach is also extensible to smooths with m ≥ 2 penalties 
(e.g. adaptive smoothers with variable smoothness along the covari-
ate range) by replacing S− ∕� in Equation (7) with the pseudo-inverse 
of a sum of the m penalty matrices for a given smoother multiplied 
by specific penalty terms: 

�∑m

j=1
�jSj

�−

. This is important because 
it allows for modelling non-linear interactions between covariates 
with different units as smooth terms via tensor-product smoothers 
(Wood et al., 2013).

There are several useful applications of smoothing splines, 
including modelling non-linear covariate effects, random 
fields and formulating interaction models with smooth effects 
(Wood, 2017). Here, we briefly summarise three important uses 
of smooth functions in SSFs (which we explore in more detail in 
Sections 3 and 4):

1.	 Including smooth functions of covariates can capture non-linear 
patterns of habitat selection and non-parametric movement 
kernels. The linear predictor of an SSF with a smooth of co-
variate x (e.g. step length, turning angle or a spatial feature) 
takes the form �it = f

(
xit
)
. This can relax the assumption that 

animals have a constant rate of selection (see Section  4.1) 
and simple unimodal distributions of step lengths and turning 
angles.

2.	 Incorporating a spatial smooth (i.e. random effect or random field) 
can account for spatial variation that is not explained by the other 
environmental covariates in the model (Arce Guillen et al., 2023). 
An SSF with a spatial smooth of the spatial coordinates (here, de-
noted u and v) has the linear predictor �it = f

(
uit, vit

)
 with smooth 

function f(u, v) =
∑K

k=1
�kΨk(u, v), where Ψk is a two-dimensional 

basis function (Hefley et al., 2017; Wood, 2017). In Appendix B.2, 
we show how an unknown centre of attraction can be captured 
with a spatial smooth, and in Section 4.2, we use a spatial smooth 

(6)�itj =
(
� + � j

)
xitj

(7)f(u) =

K∑
k=1

�kΨk(u), � ∼ N

(
0,

1

�
S
−

)
,

F I G U R E  2  Example of how to derive cubic regression splines: the blue lines are the basis functions Ψ multiplied by their coefficients �, 
which are then summed to obtain the smooth functions (black lines). The panels show two examples with different smoothing penalties (i.e. 
�).
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    |  1337KLAPPSTEIN et al.

to model patterns of a zebra's space use that cannot be explained 
by preference for a measured habitat variable.

3.	 Formulating a model with varying coefficients (i.e. where the lin-
ear effect � of a covariate varies smoothly with another covariate; 
Wood, 2017) greatly increases the flexibility of SSFs. An interac-
tion between the covariate x and a non-linear effect of u can be 
written as �it = f

(
uit
)
xit, where f(u) is given by Equation (7). That is, 

the selection coefficient for x is specified as a non-linear function 
of u. This approach is highly flexible, as it allows for any specifica-
tion of non-linear covariate-dependent habitat selection or move-
ment. For example, in Section 4.2, we show how zebra movement 
speed varies cyclically with time of day, reflecting underlying be-
havioural variation (Klappstein et al., 2023).

2.2.3  |  Hierarchical smooths

We can formulate step selection models with multiple levels of smooth 
effects via hierarchical smooths (Pedersen et al., 2019). In this frame-
work, a separate smooth relationship is estimated for each random 
effect level (e.g. each individual). This is conceptually similar to a ran-
dom slope model, as it allows individuals or groups to differ in their 
selection or movement patterns, but in a non-linear manner. Consider 
a model with a hierarchical smooth with K groups for a continuous co-
variate x. The linear predictor for the j-th group is �itj = fj

(
xitj

)
, where 

each smooth fj takes the general form presented in Equation (7). The 
same general formulation could be extended to account for inter-
group variability in any smooth effect (e.g. spatial smooths). Further, 
fj is often modelled as the sum of a population-level smooth relation-
ship and individual-specific smooth deviations from the population. 
This gives great flexibility to specify which model components are 
shared across individuals and which are not (e.g. shape or smooth-
ness of the relationship), and Pedersen et al. (2019) describe several 
important possible formulations. The sz smoother has also recently 
been added to mgcv as a type of hierarchical smoother with the main 
effect factored out of the smooth term, leaving only differences 
between individuals in the smoother. This allows for estimation of 
both an overall main effect (via a non-hierarchical smoother) and 
individual-level effects (via an sz smoother). This addresses some of 
the issues identified in Pedersen et al. (2019) with estimating hierar-
chical GAMs that include both a global and group-level smoother for 
the same term.

3  |  PR AC TIC AL GUIDANCE

In this section, we provide some guidance for practitioners inter-
ested in using mgcv to fit SSFs with smooth effects. We cover how 
to sample random points for different movement models, how to 
choose appropriate settings in mgcv, as well as model selection, in-
terpretation, and diagnostics (Figure 3 presents a summary of the 
workflow).

3.1  |  Sampling random points

As described in Section 2.1, the implementation of SSFs requires 
sampling random points from a two-dimensional distribution h to 
obtain an approximation of the likelihood (Michelot et al., 2024). 
Note that, when the movement kernel � is estimated, the random 
points are not assumed to represent movement or habitat avail-
ability, as this is estimated during model fitting. Within the CLR 
framework, it is most convenient to specify h with the same gen-
eral form as �, as this simplifies post hoc corrections to the para-
metric movement kernels (Table  1; Forester et  al.,  2009; Avgar 
et al., 2016). Therefore, when the movement kernel is chosen as 
a parametric model, we suggest that random points be sampled 
from the same families of distributions of step lengths and turn-
ing angles (Figure 3). The estimated coefficients associated with 
movement covariates (e.g. cos(�) , L) from CLR then represent 
deviations from the parameters in h. As such, the parameters of 
the movement kernel � can be derived using simple formulas (i.e. 
‘corrections’ to the tentative CLR coefficients). For common step 
length and turning angle distributions, Table  1 shows the terms 
that need to be included in the linear predictor of the SSF, and the 
corrections required to recover movement parameters (see also 
Avgar et al., 2016).

Alternatively, spatially uniform random points can be used and 
require no post hoc corrections (as h is constant), although this 
comes at the cost of reduced computational efficiency (i.e. more 
random points may be needed for accurate parameter estimation; 
Michelot et al., 2024). Despite this cost, spatially uniform points 
are a sensible choice when estimating non-parametric movement 
kernels, for which simple corrections are not possible. In this 
case, we recommend sampling points 

{
rt1, … , rtN

}
 uniformly over 

a disc centred on the previous observed location st−1, with a ra-
dius R close to the maximum observed step length for adequate 
spatial coverage (Klappstein et al., 2022; Michelot et al., 2024). In 
practice, this can be done by generating each turning angle from 
Unif( − �,�) and each step length as the square root of a random 
draw from Unif

(
0,R2

)
.

3.2  |  Implementation in mgcv

Using mgcv requires implementing an SSF as a Cox PH model via the 
cox.ph family. To do so, we define a constant ‘event time’ variable 
(times; all observations set to the same value) in conjunction with 
a stratification variable (stratum; an identifier for each grouping of 
an observed location and its random points) as our response and use 
the weights argument to distinguish the observed location from 
the random points (i.e. via an indicator variable; obs). Ultimately, this 
defines a CLR model, and the linear predictor can be defined using 
standard formula syntax in mgcv. For example, a model with non-
parametric distributions of step lengths and turning angles, and a 
linear effect of habitat covariate x is specified as
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1338  |    KLAPPSTEIN et al.

fit <- gam(cbind(times, stratum) ~ s(step) + s(angle) + x,
data = dataset,
family = cox.ph,
weights = obs)

where times is a vector of 1's, and obs is a vector of 0's and 1's. The 
model parameters are estimated via restricted maximum likelhood 
(REML).

3.2.1  |  Choice of basis functions and 
basis dimension

The choice of a smoother defines the form of the basis func-
tions and the penalty term that controls the function smoothness 
(Pedersen et  al.,  2019; Wood,  2017). Therefore, various random 

effect and smooth models can be fitted simply by choosing the 
appropriate basis functions. By default, mgcv uses thin plate re-
gression splines for both one- and multi-dimensional smooths. 
Although these generally perform well, there are several other 
general smoother options available (see Wood,  2017, and mgcv 
documentation for full descriptions). For example, a spatial random 
field could be specified as a Gaussian process with several options 
for the covariance function. As outlined by Miller et  al.  (2020), 
this approach is similar to the stochastic partial differential equa-
tion approach, which has been previously implemented for spatial 
random effects in SSFs via inlabru (Arce Guillen et  al.,  2023). 
Specialised smoothers can be used to better account for bound-
ary behaviour (e.g. soap film smoothers, Duchon splines) and non-
isotropic coordinates (e.g. splines on the sphere). Additionally, 
cyclic cubic regression splines can be used to capture cyclic pat-
terns, which are ubiquitous in ecology (e.g. effects of time of day; 

F I G U R E  3  Summary of workflow to 
implement SSFs described in this paper 
(dashed lines indicate the most common 
workflow for parametric movement 
kernels). L denotes step length, � denotes 
turning angles, and the distributions g∗ 
(any step length distribution from the 
exponential family) and VM∗ (von Mises) 
used to generate random points are 
typically estimated from empirical data. 
RSS is the relative selection strength 
calculated as the ratio between the 
two blue points, where the y-axis is the 
exponential of the partial effect.
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    |  1339KLAPPSTEIN et al.

Feldmann et  al.,  2023). Since we can view a random effect as a 
smooth (and vice versa), we can also specify a random slope model 
via the basis functions (see Figure 1 and coded examples for rel-
evant settings in mgcv).

In principle, the basis dimension K (i.e. number of columns in 
the associated design matrix) only sets the upper limit to the wig-
gliness of the function. That is, for large enough K, the smoothness 
of the function is constrained by the penalty matrices and estimated 
smoothness parameters �. In practice, the shape of the estimated 
function might therefore not be affected much by this choice, but 
a large K will be more computationally demanding (Wood,  2017). 
We suggest trying multiple choices of K to assess if model outputs 

change between fits, and checking how K compares to the effective 
degrees of freedom (if the values are similar, it may indicate that a 
higher K is required). Note that in the case of random slopes, K is the 
number of groups and cannot be changed.

3.2.2  |  Comparison to glmmTMB

In Appendix B.1, we explore the performance of mgcv and glmmTMB 
for estimating individual-level random slopes in a simple SSF with 
a single habitat covariate and gamma distribution of step lengths. 
glmmTMB was more computationally-efficient, particularly for a 

TA B L E  1  Common step length (L) and turning angle (�) distributions used in SSFs. If the random points are generated from tentative 
distributions of step lengths and turning angles, we obtain tentative estimates of the coefficients (denoted by �̃). These estimates do not 
correspond to the parameters of the SSF linear predictor, and therefore, we must correct these parameters (i.e., account for the random 
point distribution with parameters �∗) to obtain the SSF parameters (denoted as �̂), which can then transformed to the distribution 
parameters of interest �̂.

Step length or angle distribution
Distribution 
parameters SSF linear predictor

Correctiona 
(�̃ ,�∗

→ �̂) Transformation (�̂ → �̂)

Step length L Exponential Rate � �1L − log(L) �̂1 = �̃1 − �∗ �̂ = − �̂1

Gamma Shape a �1L + �2log(L) �̂1 = �̃1 −
1

b∗
â = �̂2 + 2

Scale b �̂2 = �̃2 + a∗ − 2 b̂ = −
1

�̂1

Log-normal Mean � �1log(L) + �2log(L)
2 �̂1 = �̃1 +

�∗

(�∗)2
− 2 �̂ = −

�̂1 + 2

2�̂2

SD � �̂2 = �̃2 −
1

2(�∗)2
�̂ =

√
− 1

2�̂2

Turning angle � von Mises Concentration � �1cos(�) �̂1 = �̃1 − �∗ �̂ = �̂1

Mean �
�𝜇 =

{
0 if �𝛽1 ≥0

𝜋 if �𝛽1 <0

Abbreviation: SSF, step selection function.
aThe correction step is only necessary when the SSF is being implemented with non-uniform random locations. These corrections assume that the 
random points are sampled from a joint distribution of step lengths and turning angles that matches the general form of the modelled distribution �.

F I G U R E  4  Relative selection strength (RSS) examples. (a) shows the RSS for the covariate x (all else held equal), where RSS(x1, x2) refers 
to the RSS of location with covariate value x1 relative to x2. (b) shows how to interpret a spatial smooth, where the RSS is based on spatial 
locations (i.e. different values of easting x and northing y), where RSS(s1, s2) refers to the RSS of the first location s1 (with coordinates x1, y1) 
compared to the second s2 (with coordinates x2, y2).
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1340  |    KLAPPSTEIN et al.

large number of individuals. The function gam() is not structured to 
utilise the sparsity of most random effect structures, and is known 
be relatively inefficient for many random effect levels (Wood, 2017). 
An alternative could be to formulate the SSF as a conditional Poisson 
model (i.e. with stratum-specific intercepts; Muff et al., 2020), which 
should allow fitting with the mixed model function gamm() or to be 
run in parallel via bam(). However, we did not explore this, and it 
is unclear if this would increase efficiency. Our simulated example 
showed that, for both mgcv and glmmTMB, fixed effect estimators 
were negligibly biased, and estimators of the random effect variance 
were negatively biased only in glmmTMB (consistent with results 
from Muff et al., 2020).

3.3  |  Model interpretation

Both smooth and parametric (main) effects can be interpreted 
in terms of relative selection strength (RSS; Avgar et  al.,  2017; 
Fieberg et al., 2021). For linear effects, there is an intuitive inter-
pretation of the coefficient, where (holding all else equal) exp(�) 
is how many times more likely an animal is to take a step when 
the covariate increases by 1 (similarly to other regression coef-
ficients). The relative selection strength between any two steps 
can be calculated as the ratio of the predicted selection exp

(
�xi

)
 

for each step. For example, consider steps with covariate values 
x1 and x2; the RSS of the step with x1 relative to the step with x2 is 
RSS

(
x1, x2

)
= exp

(
�x1

)
∕exp

(
�x2

)
 . For a smooth term, we lose the 

straightforward interpretation of exp(�) , but we can calculate the 
RSS in the same way. It may also be useful to plot the predicted 
selection for a grid of covariate values, but note that the y-axis can 
only be interpreted relatively (Figures  3–5). Note that this same 
interpretation applies to spatial smooths, but where the RSS is 
calculated between two spatial locations (i.e. the spatial smooth 
should not be confused with the spatial distribution of the animal; 
Figure 4b). The RSS (with uncertainty) for linear SSFs can be cal-
culated using the log_rss function of the package amt (Signer 
et  al.,  2019); this is not possible for models fitted via mgcv, but 
similar calculations are possible using other software packages (e.g. 
marginaleffects; Arel-Bundock,  2023). Note that interaction 
terms (e.g. varying coefficients) and random effects have standard 
interpretations (as described in Wood, 2017).

Confidence intervals for estimated smooth curves should be 
interpreted as pointwise (rather than simultaneous) CIs for a given 
smooth curve (Wood,  2017). Confidence intervals for smooth 
curves estimated using REML have been shown to have good cover-
age properties when averaged across the function, but might have 
above- or below-nominal coverage at different points in the curve, 
so should be interpreted with caution. Visualising posterior simu-
lations from the fitted curve provides a better visual guide to the 
degree of functional uncertainty in a fitted model, rather than just 
the estimated curve and confidence interval. These posterior simu-
lations can be produced via the smooth_samples function of the 
gratia package (Simpson, 2023).

3.4  |  Model selection and diagnostics

AIC is commonly used for variable selection in regression models. 
There are two types of AIC for models with random effects fitted 
with mgcv: (i) marginal AIC (which tends to favour complex mod-
els) and (ii) conditional AIC (favouring simpler models) (Wood, 2017). 
Wood et  al.  (2016) describes a ‘corrected’ conditional AIC, which 
better accounts for smoothing parameter uncertainty in the penalty 
term. This is the default when AIC() is applied to a gam model ob-
ject, and it is one possible approach to choose among competing 
model formulations.

Another approach is to use penalisation to automatically ex-
clude smooth terms that have no clear effect, by ‘shrinking’ the ef-
fect to zero. For most smooths, increasing � to a large number only 
constrains the relationship to be any straight line, rather than zero 
(the set of straight lines is called the null space of the penalty). This 
problem can be resolved by also penalising non-zero straight lines. In 
mgcv, this can be done with specialised shrinkage bases, for which 
the smoothing parameter � also penalises the null space (i.e. where 
� → ∞ effectively removes the corresponding term from the model) 
or by including an additional penalty with the select=TRUE op-
tion for any smooth term (i.e. the ‘double-penalty’ approach; Marra 
& Wood, 2011). Although AIC and shrinkage are convenient model 
selection techniques, we suggest they be used in conjunction with 
sensible candidate models formed from expert opinion.

In general, there are no simple residual-based checks for SSFs, 
and this is not solved by our proposed implementation in mgcv. 
Although mgcv has a convenient gam.check function, the residuals 
are specifically designed to assess the assumptions of the Cox PH 
model. For example, Schoenfield residuals test the proportional haz-
ards assumption and deviance residuals are derived from Martingale 
residuals based on the cumulative hazard function (Wood,  2017). 
However, the proportional hazards assumption does not apply 
to SSFs, and therefore we advise against using these residuals for 
model checking. Diagnositics are notoriously difficult for SSFs, and 
although out of the scope of this paper, simulation-based methods 
could be promising for SSFs with smooths (DiRenzo et  al.,  2023; 
Fieberg et al., 2018, 2024).

4  |  ILLUSTR ATIVE E X AMPLES

In this section, we present two real data examples to illustrate the 
models and implementation described in Section  2: (i) we explore 
how to best account for inter-individual variability in polar bear 
(Ursus maritimus) habitat selection, and (ii) we formulate a model 
with a spatial smooth and a time-varying (parametric) movement 
kernel for a single plains zebra (Equus quagga). In both examples, we 
chose to include a parametric movement kernel, and therefore we 
sampled from tentative distributions of step lengths that matched 
the form of � (following Figure 3). We matched each observed loca-
tion with 25 random steps, generated from a gamma distribution of 
step lengths (with parameters derived from the empirical data) and 
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    |  1341KLAPPSTEIN et al.

uniform turning angles. In all models, we modelled step lengths L 
with a gamma distribution (by including L and log(L) as covariates) and 
turning angles � with a von Mises distribution (by including cos(�) as 
a covariate). All models were fitted on an Apple MacBook Pro with 
an M1 Pro processor and 16GB of RAM.

4.1  |  Capturing inter-individual variability of polar 
bear habitat selection

We obtained 4-h GPS locations from 13 polar bears in the Beaufort 
Sea. We regularised the movement tracks and interpolated spatial 

F I G U R E  5  Results for polar bear example: (a) step length and turning angle distributions for both models (shown in dashed/solid lines), (b) 
random slopes for ice concentration, and (c) hierarchical smooths for ice concentration. In both (b) and (c), the left plot shows the population 
estimate with 95% CIs and right plot shows individual-level estimates.

(a)

(b)

(c)
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1342  |    KLAPPSTEIN et al.

covariates (following Klappstein et al., 2020, 2022). We analysed a 
total of 14,927 locations (range: 862–1810 per individual). The main 
goal of inference was to assess inter-individual variability in selec-
tion for ice concentration, which is linked to polar bear prey distri-
bution and energetic costs of travel (Klappstein et al., 2022; Pilfold 
et  al.,  2014). Therefore, we considered two models that allow for 
this inter-group variation: a model with random slopes and a model 
with hierarchical smooths. We assumed that the movement kernel � 
(described at the beginning of Section 4) was shared across all indi-
viduals. The linear predictor for the i-th location of stratum t of the 
random slope model (for j ∈ 1, 2, … 13 individuals) takes the form

where x is the ice concentration. The analogous hierarchical smooth 
model has the form,

where both smooths were constructed from K = 5 basis functions. 
Each model contained both a global term for the slope or smooth, as 
well as inter-individual deviations from that global mean, and the main 
difference was that selection for ice concentration was either mod-
elled as a log-linear effect (Equation 8) or as a smooth (i.e. non-linear) 
effect (Equation 9).

It was faster to fit the random slope model (approximately 6 min), 
compared to the hierarchical smooth model (approximately 14 min). 
Estimates of movement parameters were the same (to two decimal 
places) for both models (�̂1 = 0. 19 , �̂2 = − 1. 39 , �̂3 = 1. 04), indicat-
ing that polar bear step lengths followed a gamma distribution with 
mean �̂ = 3.22 km and standard deviation �̂ = 4.12 km, and turning 
angles followed a von Mises distribution with mean �̂ = 0 and con-
centration �̂ = 1.04 (Figure  5a). Note that the animals' movement 
patterns are affected by habitat selection, so the observed and es-
timated distributions in Figure  5a are not necessarily expected to 
match completely. The models differed in their characterisation of the 
selection for ice concentration. The population mean of the random 
slopes model indicated that the ‘typical’ bear selected for higher val-
ues of ice concentration, and was exp

(
�̂4

)
= 1.015 times more likely 

to take a step for every 1% increase in ice concentration. We cannot 
easily derive this relationship from the hierarchical smooth model, 
but we can assess relative selection between any two competing ice 
concentrations by comparing the estimated smooth function at each 
point. For example, consider if the average bear was presented with a 
choice of 0% or 50% ice concentration. The smooth and linear models 
predict that the bear would be 4.3 and 2.1 (respectively) times more 
likely to choose the step with 50% ice concentration. However, note 
that the smooth function varies across the covariate range and the 
RSS will not be the same for any two points with 50% difference (as 
is the case for a linear model).

Both models captured inter-individual variability, but the smooths 
model also captured variability in the pattern of selection (i.e. individ-
uals have functions with different shapes; Figure 5c). We compared 
the models with AIC (as described in Wood et al., 2016) and found 
that the hierarchical smooth model had the lower AIC (ΔAIC = 38.3

). This is consistent with previous results on polar bear habitat selec-
tion, which indicated that individual polar bears select for an optimal 
ice concentration between 60 to 100% (rather than a log-linear rela-
tionship; Klappstein et al., 2022) corresponding with maximum prey 
biomass at 85% (Pilfold et al., 2014).

4.2  |  Spatiotemporal variation of zebra 
movement and habitat selection

We analysed 7246 GPS locations from a single plains zebra, collected 
at a 30-min resolution in Hwange National Park in Zimbabwe from 
January–April 2014 (previously described in Klappstein et al., 2023; 
Michelot et al., 2020). The goal of the analysis was threefold: (i) as-
sess habitat selection for different vegetation types, (ii) capture 
temporal variation in movement patterns and (iii) account for any 
remaining spatial variation using a spatial smooth.

We assessed habitat selection for a categorical vegetation vari-
able (woodland, bushland, bushed grassland and grassland as the 
reference category). As in the previous example, we defined � with 
a gamma step length distribution and a von Mises distribution of 
turning angles. We allowed the scale parameter of the gamma distri-
bution (i.e. the step length coefficient) to vary based on the time of 
day � via a cyclic spline (with K = 15), to capture temporal patterns in 
movement speed that repeat or occur each day. Finally, we included 
a spatial smooth (i.e. an isometric smooth interaction between the 
easting u and northing v) using two-dimensional thin plate regression 
splines (with K = 30). The model linear predictor was

where �w, �b, �bg are indicator variables for woodland, bushland and 
bushed grassland.

It took approximately 15 min to fit the model. The zebra's mean 
step length changed throughout the day (captured by variability in 
the associated coefficient; Figure  6a), ranging from approximately 
80–100 m in the evening to 200–250 m in the early morning and mid-
afternoon (Figure 6b). Consistent with previous findings, our results 
indicate that the zebra selected for grassland over all other habitat 
types (Figure 6c; Klappstein et al., 2023; Michelot et al., 2020). The 
spatial smooth showed remaining spatial pattern, once other covari-
ates had been considered. In particular, there was one area at the 
northern edge of the map that the zebra disproportionately selected 
for (Figure 6d), which could indicate an important spatial feature that 
was not accounted for in the model. Note that the estimated spatial 
smooth should be interpreted in terms of RSS (see Figure 4b) and can-
not be interpreted as a spatial distribution.

5  |  DISCUSSION

In this paper, we explained how smooth (i.e. random) effects pro-
vide a unifying framework for many SSF extensions, which can 
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    |  1343KLAPPSTEIN et al.

be easily implemented in the widely used R package mgcv. Using 
smooths, we can account for non-linearity, inter-individual variabil-
ity and other spatial and temporal dependencies in habitat selec-
tion and movement patterns. Although we focused on SSF analyses 
where the movement is estimated, this approach could also be 
used when the movement kernel � is assumed to be known (Fortin 
et  al.,  2005). In that case, the flexible covariate effects that we 
described could only be included in the habitat selection compo-
nent of the model (and not on �, which is chosen by the analyst 
prior to model fitting; Michelot et  al.,  2024). Smooth effects are 
also highly relevant for RSFs (e.g. spatial smoothing, hierarchical 
smooths), which can also be implemented in mgcv with a binomial 
distribution (e.g. McCabe et al., 2021). We gave a general overview 
of the flexible nature of smooth effects, focusing on several key 
cases we believe will be particularly relevant, but there are many 
additional possibilities that could further extend the capabilities of 
habitat selection models.

5.1  |  Utility of smooth effects

In general, smooth interactions are powerful tools in SSFs, as they 
can model complex covariate-dependence in habitat selection and 
movement. We showed how varying-coefficient models can cap-
ture daily patterns of zebra movement speed. This approach can 
be generalised to other SSF covariates, where any time-varying 
coefficient could capture phases of movement or habitat selection 
corresponding to behavioural changes. This accomplishes a simi-
lar goal as state-switching SSFs (Klappstein et  al.,  2023; Nicosia 
et al., 2017), but rather than model discrete behavioural switches, 
movement or selection patterns are allowed to vary smoothly 
and continuously through time (similar to approaches in Hanks 
et al., 2015; Michelot et al., 2021). We could extend this approach 
to allow selection coefficients to vary over space if there is reason 
to believe that animals may modulate their behaviour in response 
to environmental features (e.g. in response to conspecifics; Smith 

F I G U R E  6  Results of the zebra model. (a) and (b) show how step length varies as a function of time of day. (a) shows how the step 
length coefficient varied throughout the day, and (b) is the same relationship, translated to the scale of the mean step length. (c) Selection 
coefficients with 95% CIs for habitat types (with grassland as a reference category, i.e. corresponding to zero). (d) Partial effect of the spatial 
smooth (on the log scale).
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1344  |    KLAPPSTEIN et al.

et  al., 2023). These time- or space-varying coefficients could be 
accomplished with specific covariates (e.g. time of day, season, 
habitat covariates), or with general temporal or spatial smooth 
interactions (e.g. a spatially varying coefficient model; Comber 
et al., 2022). Although we focused on ‘varying coefficients’, which 
refers to allowing a linear effect to vary smoothly with another 
covariate, smooth effects can also interact smoothly with other 
covariates. Interactions between covariates on different scales 
are possible with tensor products, which can include the marginal 
effects of one or both variables (Wood, 2017). For example, this 
could capture a non-parametric movement kernel with depend-
ence between step lengths and turning angles (similar to copula-
based kernels; Hodel & Fieberg, 2022).

It is often of interest to capture inter-group (e.g. inter-individual) 
variability in movement or habitat selection patterns. For this pur-
pose, random slopes have been adopted for SSFs, but these are lim-
ited to linear habitat selection and parametric movement (Chatterjee 
et al., 2024; Duchesne et al., 2010; Muff et al., 2020). We showed 
how simple random slopes can be fitted as a smooth term, and how 
we can improve on this linear framework by incorporating hierar-
chical smooths into the SSF framework. Hierarchical smooths are 
more flexible and can capture inter-group variability in non-linear 
(i.e. smooth) terms. McCabe et al. (2021) explored the utility of hier-
archical smooths in the context of large-scale species distributions 
across multiple individuals via RSFs, which do not explicitly model 
movement. By extending hierarchical smooths to SSFs, we can fur-
ther investigate inter-individual differences in both animal habitat 
selection and movement patterns that vary through time and space 
(Chatterjee et  al.,  2024). This framework also makes it straight-
forward to account for inter-individual variability by including 
individual-specific covariates, via continuous or ‘factor-smooth’ in-
teractions (e.g. animals may change their habitat selection through-
out their life cycle or there may be inter-sex differences).

5.2  |  Modelling challenges

Smooth effects afford modellers a vast range of options, and this 
can make model formulation and model selection increasingly diffi-
cult. Although AIC and shrinkage are useful tools, expert opinion and 
tenets of causal inference are necessary for selecting variables to 
include in models (Arif & MacNeil, 2022; Fieberg & Johnson, 2015). 
We also strongly encourage practitioners to carefully consider 
where additional model complexity is needed to answer their re-
search question, while taking into account the limitations of their 
dataset (e.g. sample size, spatial and temporal resolution). Statistical 
confounding should also be considered; for example, although spa-
tial smoothing is a powerful way to account for unexplained spatial 
variation, it does not necessarily resolve parameter bias (as identi-
fied in Dejeante, Lemaire-Patin, & Chamaillé-Jammes, 2024) if envi-
ronmental features are spatially correlated (Hodges & Reich, 2010).

Further, the additional flexibility of smooth and random effect 
models comes with more computational and estimation challenges. 

Model fitting may be less numerically stable and more sensitive 
to the choice of random points (i.e. integration methods; Michelot 
et  al.,  2024). Depending on the basis dimension K, there can be 
many parameters to estimate, adding computational burden, and 
requiring trial and error to appropriately specify K. Unfortunately, 
comprehensive model checking is still challenging for SSFs. We sug-
gest that users carefully consider model formulation, and inspect 
model outputs for signs of estimation problems such as very large 
standard errors, convergence issues, or high sensitivity of outputs 
to model formulation. Future work could explore simulation-based 
checks which have recently been proposed for simpler SSFs (Fieberg 
et al., 2018, 2024; Signer et al., 2024).

6  |  CONCLUSIONS

The smooths framework provides a simple way to formulate and 
fit several recent, complex extensions of SSFs. Non-linear effects 
can be modelled without needing to specify model complexity a 
priori (e.g. using polynomials) and more flexible cyclic patterns can 
be captured without the use of trigonometic functions (Feldmann 
et al., 2023). Further, random slopes can be implemented with mgcv, 
similar to other approaches in the packages glmmTMB or inlabru 
(Muff et al., 2020). Arce Guillen et al. (2023) also used inlabru to 
implement spatial random effects for SSFs. In mgcv, it is possible 
to specify spatial smooths with several forms, including Gaussian 
processes (to match previous approaches; Arce Guillen et al., 2023; 
Miller et al., 2020). Our proposed implementation allows individual-
specific and spatial random effects to be combined with other 
smooth terms described in this paper, using software for GAMs 
that many analysts are already familiar with (Pedersen et al., 2019; 
Wood, 2017). We hope this framework encourages practitioners to 
think about their habitat selection model formulations more flexibly, 
via the inclusion of interactions, random effects, and more realistic 
movement dynamics.
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