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Abstract
1. Step selection functions (SSFs) are flexible statistical models used to jointly de-

scribe animals' movement and habitat preferences. The popularity of SSFs has 
grown rapidly, and various extensions have been developed to increase their 
utility, including the ability to use multiple statistical distributions to describe 
movement constraints, interactions to allow movements to depend on local envi-
ronmental features, and random effects and latent states to account for within- 
and among-individual variability. Although the SSF is a relatively simple statistical 
model, its presentation has not been consistent in the literature, leading to confu-
sion about model flexibility and interpretation.

2. We believe that part of the confusion has arisen from the conflation of the SSF 
model with the methods used for statistical inference, and in particular, param-
eter estimation. Notably, conditional logistic regression (CLR) can be used to fit 
SSFs in exponential form, and this model fitting approach is often presented in-
terchangeably with the actual model (the SSF itself). However, reliance on CLR 
reduces model flexibility, and suggests a misleading interpretation of step selec-
tion analysis as being equivalent to a case–control study.

3. In this review, we explicitly distinguish between model formulation and inference 
technique, presenting a coherent framework to fit SSFs based on numerical inte-
gration and maximum likelihood estimation. We provide an overview of common 
numerical integration techniques (including Monte Carlo integration, importance 
sampling and quadrature), and explain how they relate to popular methods used 
in step selection analyses.

4. This general framework unifies different model fitting techniques for SSFs, and 
opens the way for improved inferential methods. In this approach, it is straight-
forward to model movement with distributions outside the exponential family, 
and to apply different SSF model formulations to the same data set and compare 
them with AIC. By separating the model formulation from the inference tech-
nique, we hope to clarify many important concepts in step selection analysis.
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1  |  INTRODUC TION

The increased availability of animal tracking data has led to the wide-
spread use of statistical methods to estimate habitat selection at the 
scale of the observed movement step. Perhaps the most common 
model is the step selection function (SSF; Rhodes et al., 2005; Fortin 
et al., 2005), whereby the likelihood of moving to the spatial location 
xt+1 given previous locations x1:t =

{
x1, x2, … , xt

}
 is in the following 

form,

where Ω is the study region. The function w describes the effects 
of environmental variables (e.g. resources, risks and environ-
mental conditions; Matthiopolous et al., 2023), and � accounts 
for the effects of movement constraints (e.g. on the range of 
observed step lengths). The habitat selection function is often 
assumed to take an exponential (or ‘log-linear’) form, that is, 
w
(
xt , xt+1

)
= exp

{
h
(
xt , xt+1

)
�
⊺

h

}
, where h

(
xt , xt+1

)
 is a vector of 

habitat variables for the step, and �h is the vector of associated 
selection parameters. The form of � reflects assumptions about 
movement patterns of the animal, and it is often written as a func-
tion of the step length and turning angle to capture movement 
speed and tortuosity of an animal's movement. We call ‘SSF’ the 
numerator of Equation (1), but the terminology is not consistent 
across the literature, and the term has been used variously to refer 
to w, to w × �, or to the whole right-hand side of Equation (1). We 
choose to define w × � as the SSF to reflect the fact that an ani-
mal's selection of a step is based on both habitat preferences and 
movement constraints. Figure 1 shows an example SSF with the 
two model components.

Step selection analysis refers to a wide range of methods for 
applying SSFs to animal tracking data, with the aim to estimate the 
parameters of the habitat selection function w and the movement 
kernel �. Although the data-generating mechanism for this model is 
described by Equation (1), this is a difficult computational problem 
due to the presence of the integral in the denominator. This integral 
is required in Equation (1) to ensure that p

(
xt+1| x1:t

)
 integrates to 1, 

that is, that it is a valid probability density function with respect to 

xt+1 (Forester et al., 2009; Rhodes et al., 2005). It also has a more 
intuitive interpretation: to evaluate the likelihood of a given step, 
we weigh its suitability against the suitability of all other possible 
steps in the study region. Here, ‘suitability’ refers both to the habitat 
quality of a location (as captured by w) and to its accessibility (as 
captured by �). This integral cannot generally be calculated analyt-
ically, because the integrand (i.e. the expression that is integrated) 
depends on w, which is usually a function of environmental covari-
ates with no mathematically convenient functional forms. That is, 
the integral cannot be rewritten in terms of simple functions that 
could be directly implemented with a computer, and so Equation (1) 
cannot easily be evaluated for a given movement track and set of 
parameters.

Although the integral in Equation (1) cannot be computed di-
rectly, methods have been developed to replace the expression 
by a tractable approximation. In some cases, such approximations 
are equivalent to applying conditional logistic regression (CLR) to 
a case–control data set, where each observed location (‘case’) is 
associated with a set of locations from the landscape (‘controls’; 
Forester et al., 2009). This has been a popular framework for step 
selection analysis, because CLR can be fitted quickly and conve-
niently using statistical software (e.g. using the survival package in R; 
Therneau, 2023). Consequently, SSFs are often conflated with CLR, 
even though the latter is merely a convenient tool to fit the former 
by approximating the likelihood in some special cases. In our view, 
this presentation can lead to confusion about model interpretation, 
and reduces the flexibility of step selection analyses. In particular, 
we can avoid the need to make strong assumptions about the func-
tional forms of w and � if we are willing to use numerical methods 
other than CLR for parameter estimation.

In this review, we show that most methods used to estimate 
parameters in step selection analyses can be viewed as applica-
tions of numerical integration. A variety of numerical integration 
techniques are commonly applied in statistics and mathematics to 
approximate integrals in cases where there is no known formula 
to compute them exactly. We will present several numerical tools 
developed for this purpose, and describe their utility in step selec-
tion analyses. This perspective suggests we can contrast existing 
methods (e.g. to identify those with lower approximation errors), 
and opens the way for improved inferential techniques in step 

(1)p
(
xt+1| x1:t

)
=

w
(
xt , xt+1

)
�
(
xt+1| x1:t

)

∫
Ω
w
(
xt , z

)
�
(
z| x1:t

)
dz

,

F I G U R E  1  Example model components at some time t, where the last point xt is at the centre of each panel and the previous steps are 
shown as black segments: (a) habitat selection function w

(
xt , z

)
, (b) movement kernel �

(
z| xt

)
 based on distance from xt and (c) resulting step 

selection function (SSF) w
(
xt , z

)
�
(
z| xt

)
. The integral on the denominator of Equation (1) is the volume under the SSF, which is required to 

transform the SSF into a probability distribution (sometimes called the step density).

habitat selection movement kernel SSF(a) (b) (c)
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26  |    MICHELOT et al.

selection analysis. Lastly, we hope that our review will motivate 
further exploration of numerical integration and estimation meth-
ods, which have broad utility across a wide range of ecological 
applications.

2  |  LIKELIHOOD APPROXIMATION IN 
STEP SELEC TION ANALYSIS

2.1  |  Maximum likelihood estimation

We consider n observed locations x1, x2, … , xn, recorded without 
measurement error at regular time intervals. The goal of step selec-
tion analysis is to estimate the parameters �h of the habitat selection 
function w, which quantify the strength of selection or avoidance of 
spatial covariates, and the parameters �m of the movement kernel 
�, which quantify movement tendencies (e.g. speed and tortuos-
ity). We denote as � =

(
�h,�m

)
 the vector of all parameters. Based 

on the standard assumptions that each step follows the model of 
Equation (1), and that successive steps are conditionally independ-
ent (i.e. given past locations), the likelihood of the parameters under 
the step selection model can be written as

Note that both w and � depend on some of the parameters in � 
(specifically, w depends on �h and � on �m), but we do not make this 
explicit for notational convenience. The likelihood (or log-likelihood) 
can be optimised numerically with respect to �, for example using 
the function optim or nlm in R, to obtain maximum likelihood esti-
mates of �. For an overview of maximum likelihood estimation in an 
ecological context, see for example Chap. 6–7 of Bolker (2008) or 
Chap. 10 of Fieberg (2023).

Model fitting requires computing the likelihood function for the 
observed data, and therefore evaluating the integral

for each time step t ∈ {1, 2, … , n − 1}. In this section, we describe 
several methods to approximate I by some quantity Î , which can be 

substituted in the likelihood formula to carry out approximate infer-
ence. The main approaches are summarised in Table 1.

2.2  |  Monte Carlo integration

We use the term ‘Monte Carlo integration’ to refer to all forms of 
numerical integration that rely on random sampling (i.e. all methods 
presented in this review, except for quadrature). Monte Carlo inte-
gration is a method for evaluating an integral of the form ∫

Ω
f(z)g(z)dz , 

where f  is a probability density function (section 3.2 of Robert & 
Casella, 2010). The general idea is to generate a sample from the 
distribution f , and use it to find an unbiased estimate of the integral. 
It can be shown that

with the numerical error of the approximation decreasing as K in-
creases. Throughout this review, we use the notation ‘zk ∼ f’ to indi-
cate that zk follows the distribution with probability density function f .

The most common approaches to fitting SSFs can be viewed 
as different forms of Monte Carlo integration applied to the in-
tegral in Equation (2), which result from different choices of the 
functions f  and g (always with the constraint that f × g = w × �).  
Generally, this choice may impact the accuracy and precision of the 
approximation, so choosing it requires thought (see Section 2.2.3 
and Rizzo, 2019).

Maximum likelihood estimation based on the numerical approx-
imation of the integral in Equation (3) defines a general framework 
of approximate inference for SSFs. Methods of inference based on 
Monte Carlo likelihood approximations are common in economet-
rics, where they are usually called simulated maximum likelihood es-
timation, to highlight their inherent stochasticity (section 3.1.2 of 
Gourieroux & Monfort, 1996). Even though the Monte Carlo esti-
mator of the integral given in Equation (3) is not biased, simulated 
maximum likelihood estimators generally are, due to the log-trans-
formation of the likelihood before it is maximised (Gourieroux & 
Monfort, 1996). As a result, Monte Carlo-based step selection pa-
rameter estimators are biased, but this bias decreases with the num-
ber of integration points.

L
(
�; x1, … , xn

)
=

n−1∏

t=1

p
(
xt+1| x1:t

)
=

n−1∏

t=1

w
(
xt , xt+1

)
�
(
xt+1| x1:t

)

∫
Ω
w
(
xt , z

)
�
(
z| x1:t

)
dz

.

(2)I = ∫Ωw
(
xt , z

)
�
(
z| x1:t

)
dz

(3)∫Ωf(z)g(z)dz ≈
1

K

K∑

k=1

g
(
zk

)
, where zk ∼ f ,

Approximate likelihood zk ~ ? References

MC w(xt ,xt+1)
∑K

k=0
w(xt ,zk)

�
(
⋅ | x1:t

)
Fortin et al. (2005)

UMC w(xt ,xt+1)�(xt+1�x1:t)
∑K

k=0
w(xt ,zk)�(zk �x1:t)

Uniform Forester et al. (2009)

IS w(xt ,xt+1)�(xt+1�x1:t)
∑K

k=0
w(xt ,zk)�(zk �x1:t) ∕ h(zk �x1:t)

User-defined h Forester et al. (2009)

UQ w(xt ,xt+1)�(xt+1�x1:t)
∑K

k=0
w(xt ,zk)�(zk �x1:t)

Regular grid Rhodes et al. (2005)

Note: The columns include the approximate likelihood of a step from xt to xt+1, method for determining 
the distribution of integration points zk, and references to key papers presenting each approach.

TA B L E  1  Summary of most common 
numerical integration approaches used in 
step selection analyses: Monte Carlo with 
known movement kernel (MC), uniform 
Monte Carlo (UMC), importance sampling 
(IS) and uniform quadrature (UQ).
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    |  27MICHELOT et al.

Using Monte Carlo integration, Equation (2) can be approxi-
mated as I ≈ 1

K

∑K

k=1
g
�
zk

�
, for functions f  and g chosen such that 

zk ∼ f and f × g = w × �. In this review, we include the observed lo-
cation xt+1 as an additional integration point in the random sample 
{
z1, … , zK

}
 , and we denote z0 = xt+1 for convenience. This slight 

deviation from the formal definition of Monte Carlo integration is 
justified in this context for three reasons: (1) the resulting formulas 
have clear links to those presented in the literature, (2) it improves 
numerical stability and decreases bias for small K (as illustrated 
with simulations in Appendix A) and (3) the effect of this change 
vanishes for large values of K. The approximate likelihood of a step 
under Monte Carlo integration is then

for some general f  and g. We present several important special cases 
below, which encompass most existing methods for step selection 
analysis (e.g. Fortin et al., 2005), including extensions proposed by 
Forester et al. (2009), Duchesne et al. (2015) and Avgar et al. (2016). 
A key characteristic of the first approach, described in Section 2.2.1, is 
that it assumes that the movement kernel � is known prior to the step 
selection analysis. It has become increasingly common to jointly esti-
mate the movement kernel and habitat selection, and the approaches 
in Sections 2.2.2 and 2.2.3 focus on that situation.

2.2.1  |  Assuming that the movement kernel 
is known

A popular approach to step selection analysis is to define the move-
ment kernel prior to fitting the SSF, typically from empirical or 
parametric distributions of step lengths and turning angles (Fortin 
et al., 2005). Then, since � is assumed to be known, we can apply 
Monte Carlo integration to the integral of Equation (2) by choosing 
f = � and g = w. Equation (2) becomes

That is, we generate the random Monte Carlo sample from the 
movement kernel �, and we take the mean of the habitat selection 
function at those random points to evaluate the integral. This charac-
teristic of the typical step selection analysis workflow has led prac-
titioners to view the zk as a sample from the ‘available’ landscape. 
The key limitation of this approach is that the movement kernel can-
not be estimated jointly with habitat selection parameters because 
the points zk are sampled from it prior to model fitting. In addition, 
this approach to estimating � without consideration of w has been 
shown to result in biased parameter estimators since the observed 
movements are a function of both processes (Forester et al., 2009).

Using this method, the likelihood of a step (Equation 1) is approx-
imated by

where zk ∼ �
(
⋅ | x1:t

)
. Note that multiplicative constants, that is, 

terms that do not depend on the parameters �, can be omitted 
from the likelihood function with no effect on inference. Here, � 
can be omitted from the numerator because it is assumed known, 
and therefore does not depend on any estimated parameter, and 
1∕(K + 1) is omitted from the denominator. When w is written in 
the usual exponential form, this is the likelihood of a CLR model, 
and parameters can be estimated using standard software such as 
the clogit function in the survival R package (Therneau, 2023). 
However, the method of Equation (4) has also been used for 
non-exponential functional forms for w, by using likelihood maxi-
misation procedures other than CLR (Potts et al., 2014).

This approach was initially proposed by Fortin et al. (2005), and 
has been widely used due to the convenience of implementation 
using CLR, and the intuitive appeal of interpreting the random lo-
cations as a sample of availability. Estimating the movement kernel 
separately has drawbacks, however: as previously mentioned, this 
approach leads to biased parameter estimators and does not propa-
gate statistical uncertainty about the movement model to the habitat 
selection parameters. In addition, it does not allow for interactions 
between the movement parameters and local environmental fea-
tures. As a consequence, recent research in step selection analysis 
has focused on formulations where � and w are estimated simultane-
ously (Avgar et al., 2016; Forester et al., 2009; Rhodes et al., 2005), 
and we present those in the next subsections. The interpretation of 
the random points zk is different when � is estimated as part of the 
SSF, and we discuss this in Section 4.

2.2.2  |  Uniform Monte Carlo sampling

If the movement kernel � is not known a priori, we must choose a dif-
ferent probability density function f  from which to generate random 
points. One natural choice is to use a uniform distribution over the 
domain Ω, because it is easy to sample from. In this case, the two 
functions in Equation (3) are defined as f(z) = 1∕A(Ω) (where A(Ω) 
is the area of Ω), and g(z) = A(Ω)w

(
xt , z

)
�
(
z| x1:t

)
. Then, Equation (2) 

can be approximated as

Intuitively, the random points are used to estimate the mean 
value of the SSF over Ω, and the integral is approximated by the 
product of that mean value and A(Ω) (see Figure 2a for a one-dimen-
sional example).

This method, called ‘uniform sampling’ by Forester et al. (2009), 
allows for joint estimation of habitat selection and movement pa-
rameters (e.g. Schlägel & Lewis, 2014). However, the uniform sam-
pling approach can be computationally demanding, because good 

p
�
xt+1� x1:t

�
≈

w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

1

K + 1

∑K

k=0
g
�
zk

� , where zk ∼ f ,

I ≈
1

K + 1

K∑

k=0

w
(
xt , zk

)
, where zk ∼ �

(
⋅ | x1:t

)
.

(4)p
�
xt+1� x1:t

�
≈

w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

1

K + 1

∑K

k=0
w
�
xt , zk

� ∝
w
�
xt , xt+1

�

∑K

k=0
w
�
xt , zk

� ,

I ≈
A(Ω)

K + 1

K∑

k=0

w
(
xt , zk

)
�
(
zk| x1:t

)
, where zk ∼ Unif(Ω).
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28  |    MICHELOT et al.

performance requires that the integration points provide adequate 
coverage of the study region Ω, and this can often only be achieved 
for large values of K. In most step selection analyses, the number 
of points can be greatly reduced based on the observation that, at 
each step, the SSF decreases sharply with distance from the start 
point xt (due to movement constraints of the animal). Points far from 
xt therefore contribute a negligible amount to the integral, and the 
approximation is virtually unchanged if the domain of integration is 
truncated to a disc around xt, with radius large enough to encompass 
any possible step (Boyce et al., 2003; Craiu et al., 2008). Fewer points 
are needed to ensure good coverage of this disc, which reduces the 
computational cost of evaluating the integral (Klappstein et al., 2022). 
Uniform sampling on a truncated interval is illustrated in Figure 2b.

Using this approximation, Equation (1) becomes

where zk ∼ Unif(Ω). Like before, we remove A(Ω)∕ (K + 1) from the de-
nominator because it is a constant and thus will not affect maximum 
likelihood estimation. Here, we cannot omit � from the numerator be-
cause it is not assumed to be known, and therefore is a function of the 
parameters � of interest. If both � and w have an exponential form, 
then Equation (5) is equal to the CLR likelihood, as long as we include 
the observed location as an integration point.

Note that uniform Monte Carlo sampling refers to spatially uni-
form points, and this should not be confused with sampling points 
with uniform distances from xt (Avgar et al., 2016). Generating 

uniform distances will not result in a spatially uniform distribution 
of end points zk, and so the above formulas do not hold in that case. 
This is due to the fact that the set of possible long steps is spread 
over a larger area than the set of possible short steps; therefore if 
distances are uniform, points will be relatively more concentrated 
around the origin than far from it (Rhodes et al., 2005). The case 
where distances are sampled from uniform distributions can in fact 
be viewed as a special case of importance sampling (Section 2.2.3).

2.2.3  |  Importance sampling

The precision of numerical integration depends on the choice of inte-
gration points; generally, the variability in the approximation is lower 
if points are concentrated in areas where the function takes large 
values. Importance sampling is a method to increase the precision of 
Monte Carlo integration by generating random points from a user-
defined distribution h, called the importance function (section 3.3 of 
Robert & Casella, 2010, and see an illustration in Figure 2c). To apply 
importance sampling to an SSF, we choose f = h and g = (w × �)∕h 
(so that f × g = w × � as required), and Equation (3) gives us the fol-
lowing approximation for the SSF integral,

The only constraint on h is that it should be strictly positive over 
Ω; when this is not the case, the approximation of the integral is 

(5)

p
�
xt+1� x1:t

�
≈

w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

A(Ω)

K + 1

∑K

k=0
w
�
xt , zk

�
�
�
zk� x1:t

� ∝
w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

∑K

k=0
w
�
xt , zk

�
�
�
zk� x1:t

� ,

(6)I ≈
1

K + 1

K∑

k=0

w
(
xt , zk

)
�
(
zk| x1:t

)

h
(
zk| x1:t

) , where zk ∼ h
(
⋅ | x1:t

)
.

F I G U R E  2  Illustration of numerical integration in one dimension, for the function f × g shown as a black line, over the interval Ω =
[
− 5, 5

]
.  

The orange dots are the integration points, and the blue dots are the corresponding function evaluations. (a) Monte Carlo integration with 
a uniform sample over Ω; the height of the grey rectangle is the mean of function evaluations. (b) Monte Carlo integration with a uniform 
sample over 

[
− 3, 3

]
. (c) Importance sampling with random points generated from a normal distribution that roughly approximates the 

integrand f × g. (d) Quadrature over a regular grid using a Riemann sum. In (a), (b) and (d), the shaded area approximates the area under the 
curve; there is no such simple visualisation method for importance sampling. In this small simulated example, the true integral is 2.53, and 
the approximations are (a) 2.83, (b) 2.28, (c) 2.41 and (d) 2.80.
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truncated to the support of h (i.e. the geographical area over which 
h > 0). Note that, in Equation (6), the importance function h is used 
to weigh the contribution of each sampled point to the approxima-
tion; this is required to correct for the preferential sampling of some 
points over others when generating zk.

Importance sampling is useful because the function h can be cho-
sen in such a way that the variance of the integral estimator decreases 
(i.e. its precision increases). The aim is to choose a function h with a 
shape that is as similar as possible to g (section 6.6 of Rizzo, 2019). 
This is a convenient framework in the context of SSFs, because it 
is often possible to determine where the SSF will take large values, 
based on the movement constraints of the animal. Animals are likely 
to avoid long steps, and so the SSF often decays rapidly as distance 
from the start point increases (Figure 1). The speed of this decay can 
be determined approximately from the data, for example by fitting a 
distribution to the observed step lengths, and this information can 
be used to define the importance function h. For example, h could be 
chosen as a bivariate normal distribution centred on the last location 
xt, or the two-dimensional spatial distribution implied by step length 
and turn angle distributions estimated from the data.

Using importance sampling with function h, the approximate like-
lihood of a step under the SSF model is

where zk ∼ h. The two other Monte Carlo approaches (Sections 2.2.1 
and 2.2.2) can be viewed as special cases of importance sampling. 
If h is the probability density function of a uniform distribution over 
geographical space, it is constant and can be omitted in Equation (7), 
and we obtain Equation (5). Alternatively, if � is assumed to be known, 
and we choose h = �, then h and � cancel out in the denominator of 
Equation (7); omitting � from the numerator because it is known, this 
simplifies to Equation (4).

Although the term ‘importance sampling’ has rarely been used in 
the SSF literature, this and equivalent methods have been widely ad-
vocated, starting with the recommendation of Forester et al. (2009) 

to distinguish between the sampling function h and the movement 
model �. Forester et al. (2009) derived a formula very similar to 
Equation (7), but with one small difference: their numerator is di-
vided by h

(
xt+1| x1:t

)
. This difference is inconsequential because 

h
(
xt+1| x1:t

)
 does not depend on the estimated parameters, so exclud-

ing it does not affect inference. The widely used methods of Avgar 
et al. (2016), often called integrated step selection analysis, are based 
on Forester et al. (2009) and can also be viewed as importance sam-
pling. They focus on cases where h and � are chosen to be from the 
same exponential family of distributions, so that the calculations sim-
plify and CLR can be used, but there is no such restriction when the 
approach is implemented with maximum likelihood estimation. In the 
approach of Avgar et al. (2016), the parameter estimates are adjusted 
after model fitting to correct for the sampling design. Here, the bias 
is corrected directly by including h in Equation (7) when implement-
ing the likelihood function. Another notable example is Johnson 
et al. (2008), who explicitly suggested importance sampling for a 
weighted distribution model analogous to the SSF in Equation (1), 
and used maximum likelihood estimation to fit the model without 
the need for CLR. More recently, Klappstein et al. (2023) and Pohle 
et al. (2023) also recognised that the approach proposed by Forester 
et al. (2009) was a form of importance sampling.

Figure 3 contrasts importance sampling and uniform Monte 
Carlo sampling (Section 2.2.2) for an example SSF. Similar to the 
one-dimensional example shown in Figure 2, the intuition is that the 
precision of the approximation of the integral depends on the cover-
age of areas where the SSF takes high values. More specifically, the 
variance of the approximation is minimised when the distribution of 
integration points (i.e. the importance function h) is proportional to 
the SSF w × �. In practice, w and � are not known, but a good heu-
ristic is to approximate the movement kernel with parametric distri-
butions (which can then be sampled from), and use these to define h.

2.3 | Quadrature

Quadrature is a deterministic (non-random) alternative to Monte 
Carlo sampling, where the function is evaluated on a user-defined 
grid of points over the domain of integration. The simplest example 

(7)

p
�
xt+1� x1:t

�
≈

w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

1

K+1

∑K

k=0
w
�
xt , zk

�
�
�
zk� x1:t

�
∕h

�
zk� x1:t

� ,

∝
w
�
xt , xt+1

�
�
�
xt+1� x1:t

�

∑K

k=0
w
�
xt , zk

�
�
�
zk� x1:t

�
∕h

�
zk� x1:t

� ,

F I G U R E  3  Illustration of three integration designs for an example step selection function. The triangle in the centre shows the last location 
xt, and the heatmap shows the function that needs to be integrated, that is, w

(
xt , z

)
�
(
z| x1:t

)
. This function decreases with distance to xt due to 

the animal's movement constraints. The black dots in each panel represent 100 points used for numerical integration: (a) uniform points over a 
disc, (b) points generated from an importance function based on distance to xt, and (c) regular quadrature grid over a disc. Importance sampling 
generates more points in areas where the function is high, and will typically lead to a better approximation of the integral.

(a) uniform sampling (b) importance sampling (c) uniform quadrature
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of quadrature is the Riemann sum (see Figure 2d); in one dimension, 
the integral is approximated by the sum of the areas of rectangles 
with heights determined by function evaluations along a regular grid 
of points. The two-dimensional extension of this approach consists 
of evaluating the function at regularly spaced points along a two-
dimensional grid, and approximating the integral by the sum of the 
volumes of cuboids.

In the context of an SSF, quadrature can be applied by evaluating 
w
(
xt , zk

)
�
(
zk| x1:t

)
 at the centres of K + 1 grid cells, 

{
z0, z1, z2, … , zK

}
 , 

and calculating

where A is the area of each grid cell. Unlike Monte Carlo ap-
proaches, there is no variance in the estimate of the integral ob-
tained from quadrature, because the grid is fixed (for a given K)  
rather than random. However, there is some numerical error in 
the estimate (akin to statistical bias), and this error decreases as 
the spatial resolution of the quadrature grid increases (i.e. as K 
increases).

Rhodes et al. (2005) proposed this approach, and pointed out 
that the grid cells need not cover the entire study area, and the ap-
proximation can be truncated to the region where the function is 
non-negligible (within some distance of xt). This can speed up com-
putations, similar to the observation in Section 2.2.2 that Monte 
Carlo integration with uniform sampling can be performed over a 
disc centred on the last location, as long as the radius of the disc is 
big enough. We call the approach where integration points are on a 
regular grid ‘uniform quadrature’, and it is illustrated in Figure 3c for 
an example SSF. The equation for approximating the integral using 
uniform quadrature is identical to that obtained for uniform Monte 
Carlo sampling, and so the expression for the SSF likelihood is given 
by Equation (5).

In step selection analysis, environmental covariates are often 
available only over the discrete cells of a raster, making the centroids 
of the raster cells a natural choice for the grid of quadrature (Rhodes 
et al., 2005), but this is not the only possible choice. Arce Guillen 
et al. (2023) described a new method of inference for SSFs, where 
the function to integrate is evaluated at the nodes of a (determinis-
tic) triangular mesh. This is another form of quadrature, which works 
well for the general class of spatial point processes implemented 
in the inlabru spatial modelling software that they use (Bachl 
et al., 2019; Simpson et al., 2016).

Some have argued that deterministic numerical integration 
is preferable in habitat selection modelling because it has better 
properties than Monte Carlo integration for low-dimensional inte-
grals like the one in Equation (2) (Arce Guillen et al., 2023; Warton 
& Shepherd, 2010). However, this comparison assumed uniform 
Monte Carlo sampling, for which the performance can be improved 
substantially using importance sampling with a well-chosen function 
h. An interesting alternative might therefore be adaptive quadrature, 
where the spatial arrangement of points in a (deterministic) spatial 

grid is chosen based on the shape of the function. The general idea is 
to iteratively subdivide the domain of integration, in such a way that 
regions where the function is more irregular are subdivided further. 
This is analogous to the idea in importance sampling of generating 
points in regions where the function is more complex or takes higher 
values (Pinheiro & Chao, 2006).

3  |  ILLUSTR ATION

We illustrate some of the key concepts and methods using simula-
tions and a real data analysis. The general approach to fitting SSFs 
presented in Section 2 requires implementing the (approximate) 
likelihood function, rather than relying on existing CLR software. 
Writing custom code greatly increases the flexibility of the model 
formulation and inference methods. To help readers implement their 
own step selection analyses, we provide R code that can be used as 
a starting point. We aimed for a trade-off between simplicity and 
flexibility, and we provide basic functions that can be tailored to fit 
a wide range of model formulations. The documented code and de-
tailed examples are provided in Appendix C.

3.1  |  Comparing sampling designs in simulations

Different methods of fitting SSFs can be viewed as different nu-
merical integration approaches for the same underlying model. 
When using Monte Carlo and quadrature methods, the placement 
of integration points is known to affect the precision of the results 
(Rizzo, 2019), and this provides a rigorous grounding for the intui-
tion that some methods of generating locations perform better than 
others. The closer the distribution of integration points is to the true 
SSF, the more precise the approximation will be. In this section, we 
use simulations to assess the effect of several design choices on our 
ability to recover the parameters of an SSF. We do not intend these 
simulations to be exhaustive, or to provide general guidelines to se-
lect the best sampling design in every application, as the choice of 
method and model is study specific. Rather, our aim is to showcase 
the qualitative effect of different design choices, encouraging re-
searchers to explore the various options for themselves when they 
perform step selection analysis.

We considered three designs for the integration points: (1) points 
sampled uniformly at random over a disc of radius equal to the max-
imum observed step length, (2) importance sampling where h was 
based on a gamma distribution of distances and a von Mises dis-
tribution of turning angles and (3) uniform quadrature where inte-
gration points were defined on a regular spatial grid over a disc of 
radius equal to the maximum observed step length. In all cases, the 
parameters of the importance function were chosen based on the 
empirical distributions of step lengths and/or turning angles.

We first simulated a movement track of length 1000 from an 
SSF with known parameters. For the habitat selection component, 
we used w

(
xt , xt+1

)
= exp

(
� × c1

(
xt+1

))
, where c1 was a simulated 

I ≈ A

K∑

k=0

w
(
xt , zk

)
�
(
zk| x1:t

)
,
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spatial covariate shown in Appendix B and � = 5 was the corre-
sponding selection parameter. The movement kernel was chosen 
as �

(
xt+1| x1:t

)
= exp

(
− 4Lt + 3cos

(
�t
))

, where Lt and �t are the 
step length and turning angle at time t respectively. This formula-
tion implies that step lengths followed a gamma distribution with 
mean 0.5 and standard deviation 0.35, and turning angles followed 
a von Mises distribution with mean zero and concentration 3. For 
each scenario, we ran the following steps for increasing numbers of 
random points, K ∈ {5, 10, … ,195,200}:

1. Generate K integration points for each observed step, based 
on a given numerical integration method;

2. Estimate the selection parameter � using maximum likelihood es-
timation, based on the integration points from step 1.

For Monte Carlo sampling methods, we repeated these steps 50 
times to capture estimator variability, yielding 50 estimated param-
eters �̂ for each approach and each number of random points. For 
deterministic quadrature, there is no sampling variability and so the 
procedure only needed to be run once for any given K. Note that, 
for quadrature, the number of integration points was constrained by 
the design of the grid, and so it does not always exactly match the 
values of K listed above. For each simulation, we evaluated estimator 
bias due to the numerical integration, as the difference between the 
estimated parameter and the asymptotic estimate obtained when K 
is very large (here, K = 5000). We did not compare the estimates to 
the true parameter values used in simulation, because this would not 
make it possible to separate bias due to integration error (which we 
are interested in) and finite-sample bias inherent to maximum like-
lihood estimation (which does not depend on integration method).

Figure 4 compares the bias in the selection parameter � for the 
three numerical integration approaches, over a range of numbers of 
random points. The bias and variance decreased as the number of 
random points increased for all tested methods. Overall, uniform 
Monte Carlo sampling had lower precision (i.e. higher variation) than 
importance sampling; this is to be expected, as importance sampling 

uses observed movement patterns to generate integration points 
efficiently. Uniform quadrature was generally positively biased (i.e. 
the selection parameter was overestimated) and, although the bias 
decreased as K increased, both random sampling methods seemed 
to perform better in this analysis. As described in Section 2.2, the 
bias is due to the log-transformation of the likelihood for optimisa-
tion: the parameter value that maximises the approximate log-likeli-
hood can be biased even if the estimator of the likelihood is unbiased 
(Gourieroux & Monfort, 1996).

These simulations show that the performance of any method 
of numerical integration is dependent on the number of integra-
tion points. In practice, there is no consensus about how high this 
number should be, and Thurfjell et al. (2014) reported that different 
studies have used a wide range of numbers of random points, be-
tween K = 2 and K = 200. The minimum number needed for a given 
analysis depends on many factors, such as the length of the ob-
served times series, the sampling scheme used, and the complexity 
of the SSF model formulation. For this reason, we recommend that 
practitioners try several numbers of random points, until the param-
eter estimates stabilise, to ensure that the approximation error in 
the results is small. This is consistent with the results presented in 
fig. 2 of Fieberg et al. (2021), and similar to the advice of Warton 
and Shepherd (2010) and Northrup et al. (2013) in the context of re-
source selection functions. Small samples can also lead to numerical 
instability and failure to converge during model fitting.

3.2  |  Comparing models using AIC and the same 
set of integration points

To demonstrate how an understanding of numerical integration 
techniques and their use in step selection analyses can facilitate 
model comparisons, we considered location data from a red deer 
(Cervus elaphus) in Northern Germany, automatically loaded with 
the amt R package as the data object deer (Signer et al., 2019). 
The locations are on a regular 6-hour time grid, and the package 

F I G U R E  4  Results of simulation study. Bias (estimate − truth) in estimated selection parameter for one spatial covariate, as function of 
the number of integration points. Results are compared for three methods for performing numerical integration: uniform Monte Carlo (blue 
boxes), importance sampling with gamma-distributed distances and von Mises-distributed angles (red boxes), and uniform quadrature (black 
crosses). Each box represents 50 estimated values. For quadrature, the number of integration points was constrained by the design of the 
grid, so values of K do not exactly match those used for other methods.
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also provides a binary raster layer for forest cover (through the 
get_sh_forest() function). We will use importance sampling 
with a single set of integration points to fit multiple models and 
compare them using AIC.

We generated integration points using gamma-distributed 
step lengths and von Mises-distributed turning angles, with pa-
rameters estimated from their empirical distributions. We com-
pared four SSF formulations, all with the same habitat selection 
component w (with forest cover as covariate), but with different 
families of distributions of step lengths Lt and turning angles �t in 
the movement kernel: (i) Lt ∼ Exp

(
�1
)
 and �t ∼ uniform( − �,�), (ii) 

Lt ∼ gamma
(
�1, �2

)
 and �t ∼ uniform( − �,�), (iii) Lt ∼ gamma

(
�1, �2

)
 

and �t ∼ von Mises(0, �) and (iv) Lt ∼ Weibull
(
�1, �2

)
 and 

�t ∼ wrapped Cauchy(0, �). Note that we make a distinction be-
tween the distributions used to generate random locations (which 
determine the importance function h ) and the distributions used 
to specify the movement kernel �. This allows us to fit all four 
SSFs using the same integration points, that is, the exact same 
data set, such that the models can be compared using AIC.

The results are shown in Table 2. For this data set, AIC favoured 
the SSF formulation (iv), where step lengths were modelled with a 
Weibull distribution and turning angles with a wrapped Cauchy dis-
tribution. This example illustrates two advantages of implementing 
maximum likelihood estimation using numerical integration: the flex-
ibility of choosing non-exponential models for the movement kernel 
(the Weibull and wrapped Cauchy distributions are not in the ex-
ponential family), and the ability to compare models with different 
movement formulations.

4  |  RETHINKING STEP SELEC TION 
ANALYSIS

4.1  |  Beyond conditional logistic regression

It is common for step selection analysis to be presented as CLR, 
where each observed step is a ‘case’ associated with a set of ‘control’ 
(random) steps. Indeed, in many important special cases, the SSF like-
lihood is approximately equivalent to that of a CLR model (Forester 
et al., 2009; Fortin et al., 2005), which allows parameters to be es-
timated with CLR software (Signer et al., 2019; Therneau, 2023). To 

justify that approach, Forester et al. (2009) described an SSF as a 
discrete-choice model, which is a popular way to present resource 
selection functions (Cooper & Millspaugh, 1999). In that framework, 
the animal is assumed to have access to a finite number of discrete 
and mutually exclusive resource units, and the model describes how 
it chooses one unit over the others. In a step selection model, how-
ever, the animal has infinitely many movement options (because it 
moves over a continuous space). To reduce the problem to a discrete 
choice, Forester et al. (2009) conditioned each movement decision 
on a set of random (‘control’) points, and assumed that those repre-
sented the animal's options for that time step. This can be viewed 
as an approximation of the target model, akin to the numerical in-
tegration approaches that we presented in Section 2, and the two 
approaches lead to equivalent formulas.

The equivalence between CLR and the SSF likelihood has al-
lowed ecologists to leverage standard statistical software for quan-
tifying drivers of movement and habitat selection for many years. 
Recently, Muff et al. (2020) and Chatterjee et al. (2023) demon-
strated how a similar equivalence between CLR and Poisson re-
gression with fixed stratum-specific intercepts could be exploited 
to model individual variability in habitat selection and movement 
parameters using random effects. Despite these equivalencies, we 
emphasise that CLR is not the model of interest, but rather a tool to 
fit the target SSF model, shown in Equation (1). Notably, the equiv-
alence between CLR and the SSF likelihood only holds when both 
the habitat selection function w and the movement kernel � have an 
exponential form. CLR is therefore limited to distributions from the 
exponential family when modelling �, and most step selection mod-
elling research has therefore defaulted to using an exponential or 
gamma distribution for step lengths and the von Mises distribution 
for turn angles (Avgar et al., 2016; Duchesne et al., 2015). There is 
no such restriction in the general model, however, which allows for 
the use of a much wider range of distributions, such as the Weibull 
distribution for step length and the wrapped Cauchy distribution for 
turning angle. As our applied example illustrates (Section 3.2), these 
alternatives can potentially lead to improved model fit. Likewise, it 
is possible to model habitat selection using functions other than the 
exponential (e.g. Potts et al., 2014; Schlägel et al., 2017), although it 
is a natural choice for continuous variables since selection functions 
should be positive and unbounded (McDonald, 2013).

4.2  |  Separating model and inference

As we have already mentioned, it is important to distinguish between 
the choice of model formulation and the method of parameter esti-
mation. Here, the model is of the form shown in Equation (1), and the 
main modelling decision is defining the functional forms of w and �. 
For a given model formulation, many possible numerical integration 
methods can be used to approximate the likelihood, and therefore 
to estimate the model parameters, as described in Section 2. These 
methods, together with any implementation scheme such as CLR or 
other likelihood maximisation, constitute the inference procedure, 

TA B L E  2  Model comparison for deer analysis.

Step length Turning angle AIC ΔAIC

(iv) Weibull Wrapped Cauchy 2500 0

(ii) Gamma Uniform 2507 7

(iii) Gamma Von Mises 2509 9

(i) Exponential Uniform 2521 21

Note: The four SSFs are specified using different distributions of step 
lengths and turning angles, and they are shown in order of increasing 
AIC (i.e. the better model is at the top). ΔAIC is the difference in AIC 
between each model and the better model.
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and are not the model itself. Choices of model and inference pro-
cedure are both important for the analysis: the model formulation 
should capture important features of the data-generating process 
(i.e. animal movement and habitat selection), while the inference 
procedure should be chosen carefully to reduce the approximation 
error. We posit that much confusion has arisen in the context of step 
selection analysis due to the conflation of model and inference, es-
pecially when comparing techniques. Figure 5 summarises the dis-
tinction between the choice of model formulation and the choice of 
a method of inference in step selection analysis.

One particular area of confusion has been the interpretation of 
the integration points 

{
z1, … , zK

}
 generated as part of model fitting. 

Due to the historical influence of Fortin et al. (2005), who assumed 
that the movement model � was known and used it to generate ran-
dom locations (Section 2.2.1), the zk are commonly assumed to be 
a sample of ‘available’ points (or, equivalently, steps connecting the 
previous location and zk are seen as possible movements). However, 
this is crucially not the correct interpretation in other approaches, 
such as uniform sampling (Section 2.2.2) and importance sampling 
(Section 2.2.3). Indeed, with those methods, the sample of random 
locations does not have any particular biological interpretation, and 
it merely constitutes a numerical tool to approximate an integral over 
space. This is the case in most modern step selection analyses, in 
which availability is estimated jointly with habitat selection through 
the parameters of the function �, rather than assumed known a pri-
ori (Avgar et al., 2016; Forester et al., 2009; Rhodes et al., 2005).

Another important distinction is between the distributions 
used to model movement, and the distributions used to generate 
random locations. The modelled distributions are specified through 
the choice of �, independently of the choice of sampling function 
(e.g. h in importance sampling). Forester et al. (2009) and Avgar 
et al. (2016) showed that it is mathematically convenient to generate 

random locations from the same family of distributions that is used 
in �, but this is not a necessity. As we demonstrate in Section 3.2, it 
is for example possible to use a gamma distribution of distances to 
generate random locations (i.e. in the importance function h), but 
specify � so as to model step lengths with a Weibull distribution 
in the analysis. Furthermore, it is straightforward to fit SSFs with 
different movement kernel formulations on the exact same data 
set (including identical random locations). This makes it possible to 
select the formulation for the movement kernel based on standard 
model selection criteria such as AIC. This is not possible within the 
workflow outlined by Avgar et al. (2016) and implemented by Signer 
et al. (2019), which requires h and � to be from the same family. When 
the model and method of inference are separate, it is also easier to 
determine how different functional forms for the movement kernel 
� can be implemented in practice, and we discuss this in Appendix D.

In fact, the distribution from which the random locations are gen-
erated only matters insofar as different distributions might require 
different numbers of integration points to achieve low numerical 
error (Section 3.1). For a large enough number of integration points, 
the choice of distribution is inconsequential. In practice, when the 
computational cost is high, it might not be an option to increase the 
size K of the random sample arbitrarily; in this case, it is prefera-
ble to choose an importance function h that reduces the estimation 
variance for a given K. Importantly, the choice of h does not reflect 
a modelling assumption, and it is used merely as an inferential tool 
to reduce the approximation error. Another implication is that, for a 
given model formulation, the interpretation of the movement and 
habitat selection parameters � does not depend on the model fitting 
approach. Indeed, different numerical integration methods merely 
lead to different approximations of the same parameters. Note that 
the Monte Carlo approach described in Section 2.2.1 (where move-
ment is fixed a priori) is slightly different: in that case, the choice of 

F I G U R E  5  Summary of modelling 
and inference choices for step selection 
analysis.
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integration points reflects a modelling decision (i.e. the form of the 
movement kernel �), and has a direct impact on the interpretation of 
the parameters (as discussed by Beumer et al., 2023). This requires 
the additional assumption that movement is not affected by habitat 
selection, and the habitat selection parameters obtained from that 
method therefore only have the same interpretation as the output of 
other approaches if this assumption holds.

5  |  CONCLUSION

The general problem of evaluating complex integrals has been stud-
ied extensively, and many different approaches could be adapted in 
the context of step selection analysis. For example, the Laplace ap-
proximation is a versatile method where it is not necessary to evalu-
ate the function at integration points. Instead, it is assumed that the 
integrand is well approximated by a normal distribution, for which 
the integral is known. In step selection analyses, the integrand typi-
cally combines the movement kernel and the habitat selection func-
tion, resulting in a complex (possibly multimodal) function, and it is 
not clear whether the Gaussian assumption would be reasonable. 
As suggested in Section 2.3, another promising direction is to com-
bine ideas from quadrature and importance sampling, and choose 
the nodes of a deterministic grid to improve the approximation in 
areas where the SSF is irregular. This is similar to adaptive quadra-
ture, which is already widely used in ecology for non-Gaussian gen-
eralised linear mixed models (Bolker et al., 2009).

All model fitting approaches are approximately equivalent in the 
limit where the number of points in the Monte Carlo sample or the 
quadrature grid is large (i.e. as K → ∞). It might therefore seem unnec-
essary to concern ourselves with the design choices described in this 
review, because we can always increase K until the bias and/or variance 
in the estimation are negligible. Because SSFs are relatively simple mod-
els, computation time is often small for modest-sized data sets, and the 
additional cost of increasing K might be moderate. However, we have 
shown that using simplistic numerical integration techniques can cause 
bias to persist even for quite large K (e.g. uniform Monte Carlo and 
quadrature; Figure 4), so thinking carefully about the numerical integra-
tion technique employed may often be preferable to simply increasing 
K. Furthermore, step selection models are becoming more sophisti-
cated and complex, so computational effort might become the bottle-
neck of many analyses (e.g. multistate models; Nicosia et al., 2017). We 
anticipate that the sampling design will become increasingly critical in 
those cases, as well as in studies with large data sets.

We are certainly not recommending that all biologists stop using 
CLR software for step selection analyses, as it is a convenient, fast and 
stable implementation for many purposes. In cases where the habitat 
selection and movement are modelled in exponential form, the CLR 
approach outlined by Forester et al. (2009), Duchesne et al. (2015) and 
Avgar et al. (2016) can safely be applied, for example, with the amt R 
package (Signer et al., 2019). However, even in that context, under-
standing the role numerical integration plays in parameter estimation 
can shed light on several important technical details. In particular, this 

approach clarifies the role of ‘control’ points in step selection analy-
sis: although those locations are generally a numerical tool rather than 
a biologically relevant set of spatial locations, placing them in areas 
where the animal is most likely to move decreases the required num-
ber of points. In addition, importance sampling explains the post-hoc 
parameter adjustment proposed by Avgar et al. (2016), which is needed 
to correct for the choice of importance function (see also Appendix S3 
of that paper). Overall, we have shown that the interpretation of step 
selection models ought to be separated from any specific model fit-
ting approach, and that understanding this dichotomy between model 
construction and model fitting leads to much broader application of 
SSFs than those confined to a CLR approach.
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