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Preface

These are the notes for the course STAT 4370/5370 Stochastic Processes at Dalhousie University.
For other resources, such as the syllabus and lecture slides, please consult the Brightspace page
for the course.

Note: The material in these notes is not original, and much of it has been adapted from other
references on stochastic processes, to which I am greatly indebted. There are many general
books on stochastic processes, as well as on specific topics covered in each chapter of this
course, including the following references.

• Ross (2019) and Grimmett and Stirzaker (2020) are classic texts on probability and
stochastic processes, and they provide a rigorous mathematical treatment of most topics
covered in this course.

• Dobrow (2016) and Korosteleva (2022) provide a more application-oriented description,
including many great examples, as well as R code for implementation.

• Norris (1998) is a great reference about Markov chains specifically.
• Zucchini, MacDonald, and Langrock (2017) give a relatively non-technical introduction

to hidden Markov models, with a focus on application and implementation.

All errors in these notes are my own, however; please let me know when you find one! You can
contact me at: theo.michelot@dal.ca.
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1 Background

1.1 Some motivation
A stochastic process describes the evolution of some phenomenon over time. “Stochastic” is
generally used as interchangeable with “random”, indicating that the processes include an ele-
ment of chance or unpredictability. Note that this does not imply that we have no information
whatsoever about the dynamics: a stochastic process typically defines some structure, while
allowing for some randomness around that. This makes stochastic processes very widely ap-
plicable: in many physical, biological, financial (and other) systems, we know what kind of
changes to expect, but not to the point that we could predict their evolution exactly. For
example, we might assume that a population increases exponentially, but we couldn’t predict
precisely each individual birth and death. This is the stochastic component.

The study of stochastic processes can be viewed as an application of probability theory, and
we will use them as probability models. A probability model is a way to define how different
quantities are related probabilistically, i.e., through probability distributions rather than de-
terministic relationships. Our main focus will be on describing such processes as mathematical
objects, study their properties, and understand what types of real-world situations they can
represent.

Defining a model is a separate question to the problem of statistical analysis and inference,
which typically refers to the estimation of the parameters of a probability model from observed
data. This will only be a secondary focus in some of the chapters of this course, but it is a
very important topic in practice, as it is necessary to use stochastic processes to understand
and predict things around us.

Example 1.1: Population modelling

Thomas Austin was an English settler in Australia, who released 29 rabbits there in
1859 for recreational hunting. The non-native species thrived and, within years, the
population grew to several millions. We can view the number of rabbits as a random
process, where births depend on the reproduction rate and deaths depend on predation,
disease, etc. Each birth and death is unpredictable, but we might be able to model the
overall population fairly well. We will talk about birth-death processes, which formalise
the ideas presented here, in a later chapter.
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1 Background

It is common to model population growth as exponential, but we might not expect it to
follow an exponential curve exactly (e.g., some years might be warmer than others). These
irregularities can also be captured by the stochastic process. Figure 1.1 shows five example
simulated populations starting from 19 individuals, all assuming the same birth and death
rates. The five simulations look different because of the randomness, but they all follow
an exponential growth.
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Figure 1.1: Simulated example of rabbit population dynamics. The five lines correspond to five
simulations, all with the same initial number (19 rabbits) and the same birth and
death rates.

In a situation like this, we might be interested to answer questions such as:
• how long do we expect it will take to reach 100,000 rabbits?
• what is the probability that the rabbit population will die out?

Example 1.2: SIR model

SIR models are very common in the study of infectious diseases. The three letters stand
for “susceptible”, “infectious”, and “recovered”, because the model assumes that each
person is in one of those three categories. The dynamics are usually parameterised in
terms of a transmission rate (susceptible to infectious) and a recovery rate (infectious
to recovered). These parameters are linked to the 𝑅0 value, which is often used to
summarise how infectious a disease is. Note that we can think of the “recovered” group
as also including those who have died from the disease.

Figure 1.2 shows an example of how the number of infected people might change through
time, according to an SIR model. It starts with a fast increase in the number of infections,
as the number of susceptible people is still large (i.e., nobody has immunity yet). After
some time, after a large part of the population has either died or gained immunity, the
number of infectious people starts decreasing, eventually towards zero.
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Figure 1.2: Simulated example of SIR disease spread model, for a population of 300 individuals.

We could use a model like this to investigate many important questions, for example:
• when will the number of infected people peak?
• how high can we expect the peak to be?
• how long will it take for 70% of the population to recover?

Of course, this is a very simple model, and there are many extensions, e.g., where immunity
does not last forever, or where it is possible to gain immunity through vaccination rather
than infection. Many of the models used to analyse the spread of Covid-19 were based on
extensions of the SIR model.

Example 1.3: Quality of my lectures

Assume that I am not a very consistent instructor, and that some of the lectures I
give are Good and some of them are Bad. If a given lecture is Good, then there is
a 90% chance that the next lecture will be Good too, and a 10% chance that it will
be Bad. If a lecture is Bad, there is a 50% chance that the next lecture will be Good
or Bad. In this case, unlike the population and disease spread examples above, there
isn’t a numeric variable that we can quantify through time. Instead, the variable of
interest is “quality of a lecture”, which is binary (“Good”/“Bad”). A simulated exam-
ple might look something like (Good, Good, Good, Bad, Good, Bad, Bad, Good, Good, …)

This is also a problem that we can study using stochastic processes. For example, we
might be interested to know:

• if I give a Good lecture today, what is the probability that I give a Good lecture
again in a week?

• in the long run, what will be the proportion of Good and Bad lectures?

We could also think about situations in which stochastic processes are not appropriate. For
example, classical mechanics can describe the position of planets over time very precisely, and
so there is no need for a probabilistic model.

5



1 Background

We will start by reviewing some results from probability theory, that will be useful in later
chapters.

1.2 Probability review
Probability is a mathematical tool used to describe randomness. The real-world interpretation
of probability and randomness has been a long-standing philosophical question that we will not
discuss in this course. Whether we consider that randomness is a feature of the world or that
it emerges from our (lack of) knowledge does not affect our study of probability models.

1.2.1 Sample space, events, and so on

Although it is most often implicit in practice (and in this course), the description of probability
usually starts from the notion of an experiment, i.e., some procedure with a set of possible
outcomes. For example, the experiment could be measuring the length of an object (outcome
= positive number), throwing a die (outcome from 1 to 6), a general election (outcome ∈
{Conservative Party wins, Liberal Party wins, NDP wins, … }), etc.

The sample space Ω is the set of all possible outcomes of the experiment, and an element
𝜔 ∈ Ω is called an outcome. A subset of Ω, 𝐴 ⊂ Ω, is called an event. In the general election
example, {Liberal Party wins, NDP wins} is an event.

We can assign a probability Pr(𝐴) to each event 𝐴. Mathematically, probability is defined by
three axioms, that you can easily find online. In practice, we will think of the probability in
the common sense, as a measure of uncertainty of the event. Because events are sets, set theory
is often a convenient way to think about probability, e.g., using Venn diagrams. For example,
this helps formalise ideas such as the intersection of two events (“𝐴 and 𝐵”), the union of two
events (“𝐴 or 𝐵”), the complement of an event (“not 𝐴”), etc.

1.2.2 Random variables

The building block of probability models is the random variable, which can be informally
defined as a function that associates a numeric value to each possible outcome of a random
experiment. We do not know what value the random variable will take before we measure it,
but we can quantify the probability of it taking different values. These probabilities define the
distribution of the random variable.

If the range of values that the random variable can take is a countable set (such as the integers),
then we say that it is a discrete random variable. The distribution of a discrete random variable
associates a probability to each number in the range. For example, consider the number of
emails that you receive on a given day, which is defined over {0, 1, 2, … }. We don’t know what
the number will be in advance, but we might be able to give a probability to each possible value
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1.2 Probability review

(e.g., the probability of getting 0 emails is 0.01, the probability of getting 1 email is 0.05, and
so on). Note that a countable set can be finite (e.g., {1, 2, 3, 4, 5, 6}) or infinite (e.g., ℕ).

If the range is uncountably infinite (such as the real line), then the random variable is con-
tinuous. The probability that a continuous variable take any given value in the sample space
is zero, but we can instead use the probability of falling within some interval. For example,
consider the random variable that measures the height of a given student in this class, defined
over ℝ+ (or arguably some subset of it). Its distribution could be used to make statements such
as: the probability of being between 150 and 160 cm is 0.3, the probability of being between
taller than 240 cm is 10−10, etc.

Terminology and notation

Let 𝑋 be a random variable with range 𝒮. We use the following notation:
• Pr(𝑋 = 𝑥) is the probability that 𝑋 equals 𝑥 ∈ 𝒮 (particularly useful for a discrete

random variable);
• Pr(𝑥1 ≤ 𝑋 ≤ 𝑥2) = Pr(𝑋 ∈ [𝑥1, 𝑥2]) is the probability that 𝑋 is between 𝑥1 ∈ 𝒮

and 𝑥2 ∈ 𝒮 (particularly useful for a continuous random variable).

Discrete case:
When 𝑋 is a discrete random variable, its probability distribution (or simply “distri-
bution”) is a vector 𝑢 = (𝑢0, 𝑢1, … ), of length the size of 𝒮. Each entry is defined as
𝑢𝑖 = Pr(𝑋 = 𝑠𝑖), where 𝑠𝑖 is the 𝑖th element in 𝒮.

When viewed as a function of 𝑥, we call Pr(𝑋 = 𝑥) the probability mass function of 𝑋.

Continuous case:
When 𝑋 is a continuous random variable, we denote as 𝑓𝑋(𝑥) the probability density
function of 𝑋 evaluated at 𝑥. That is, 𝑓𝑋 is the non-negative function defined by

Pr(𝑥1 ≤ 𝑋 ≤ 𝑥2) = ∫
𝑥2

𝑥1

𝑓𝑋(𝑥) 𝑑𝑥.

In some of the later chapters, we might use notation like 𝑓(𝑋 = 𝑥) instead, because it
makes some long equations easier to read, but it makes the dependence of the function 𝑓
on the random variable 𝑋 implicit.

By definition, the sum of the probabilities of all possible outcomes must equal 1, which implies
the following constraints on the probability distribution,

• Discrete case:
∑
𝑥∈𝒮

Pr(𝑋 = 𝑥) = 1;
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1 Background

• Continuous case:
∫

𝒮
𝑓𝑋(𝑥) 𝑑𝑥 = 1.

It is important to distinguish between a random variable and a realisation from this random
variable. The former is defined by a probability distribution, whereas the latter is a single
numeric value. It is common to use an uppercase letter to denote a random variable (“𝑋”) and
a lowercase letter to denote its realisations (“𝑥”).

1.2.3 Basic definitions and properties

The concepts presented above can be used to describe the distribution of a single random
variable. To represent real-world systems, however, we usually need several random variables,
and we need a way to express relationships between them using the language of probability. In
this context, we distinguish between three different types of distributions:

• the joint distribution (multivariate distribution of the random variables);
• the marginal distribution (distribution of one random variable regardless of the other

ones);
• the conditional distribution (distribution of one random variable when the other random

variables are known).

In this section, we describe conditional probability and conditional distributions in the context
of two random variables. Several definitions and properties are presented in three different
forms: for two events, for two discrete random variables, and for two continuous random
variables. Note that the three formulas need not be memorised separately, as it is easy to go
from one to another.

Definition 1.1

For two events 𝐴 and 𝐵, the conditional probability of 𝐴 given 𝐵 is

Pr(𝐴 ∣ 𝐵) = Pr(𝐴, 𝐵)
Pr(𝐵) ,

where Pr(𝐴, 𝐵) is the (joint) probability of events 𝐴 and 𝐵 (sometimes denoted as Pr(𝐴∩
𝐵)).

In practice, the “events” that we will study will always be statements about the value of
a random variable, e.g., 𝑋 = 1 or 1.5 ≤ 𝑋 ≤ 2. This leads us to define the conditional
distribution of a random variable given another random variable. For the continuous case, we
must first define the joint density function of two random variables.
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1.2 Probability review

Definition 1.2

Let 𝑋 and 𝑌 be two continuous random variables with range the real line. The joint
probability density function of 𝑋 and 𝑌 is the non-negative function 𝑓𝑋,𝑌 defined as

Pr(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = ∫
𝑥

−∞
∫

𝑦

−∞
𝑓𝑋,𝑌 (𝑢, 𝑣)𝑑𝑣𝑑𝑢,

for all 𝑥, 𝑦 ∈ ℝ.

Definition 1.3

Let 𝑋 and 𝑌 be two random variables.
• If 𝑋 and 𝑌 are discrete, the conditional probability mass function of 𝑌 given

𝑋 = 𝑥 is
Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) = Pr(𝑋 = 𝑥, 𝑌 = 𝑦)

Pr(𝑋 = 𝑥)
• If 𝑋 and 𝑌 are continuous, the conditional probability density function of 𝑌

given 𝑋 = 𝑥 is

𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑋 = 𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋(𝑥)

Example 1.4: Conditional mass function

For two discrete random variable, one way to understand the connection between the joint
and conditional distributions is by writing them as a table. Consider the random variables
𝑋 and 𝑌 with joint distribution defined by the following table.

X = 0 X = 1 X = 2

Y = 0 0.2 0 0.3
Y = 1 0.1 0.3 0.1

9



1 Background

Each entry gives the probability of some combination of values for 𝑋 and 𝑌 , e.g.,
Pr(𝑋 = 0, 𝑌 = 0) = 0.2, Pr(𝑋 = 1, 𝑌 = 0) = 0, and so on. All entries sum to 1,
indicating that these are the only possible combinations for 𝑋 and 𝑌 .

We can sum over the rows (respectively, columns) to get the marginal distribution of 𝑋
(respectively, 𝑌 ). The marginal distribution is just the unconditional distribution of the
random variable. So, for 𝑋, we get the probability distribution (0.3, 0.3, 0.4) by summing
over the rows of the table.

The conditional distribution of 𝑌 given 𝑋 is obtained by considering just one column of the
table at a time, and dividing it by the sum of its entries to obtain a vector of probabilities
that sum to 1. So, for example, the conditional distribution of 𝑌 given 𝑋 = 2 is

( 0.3
0.3 + 0.1, 0.1

0.3 + 0.1) = (0.75, 0.25).

Similarly, we could use the table to get the conditional distribution of 𝑋 given 𝑌 . For
example, given 𝑌 = 0, the conditional distribution of 𝑋 is

( 0.2
0.2 + 0 + 0.3, 0

0.2 + 0 + 0.3, 0.3
0.2 + 0 + 0.3) = (0.4, 0, 0.6).

Example 1.5: Conditional density function

For two continuous random variables, we can’t write the joint distribution as a table, but
we can visualise 𝑓𝑋,𝑌 as a heatmap. Figure 1.3 shows an example where 𝑋 and 𝑌 jointly
follow a bivariate normal distribution with correlation 0.8. Areas where the joint density
function is high correspond to combinations of 𝑋 and 𝑌 that are more likely, even though
any given combination has probability zero. In this example, it is more likely for (𝑋, 𝑌 )
to be close to the origin than to (2, −2), for example.

In the continuous case, the conditional distribution can be viewed as a slice through the
joint distribution (analogous to taking one column at a time in the discrete example). So,
for example, to get the conditional distribution of 𝑌 given 𝑋 = 1, we take a slice of
the joint density function at 𝑥 = 1, and we normalise the resulting function so that it
integrates to 1. The resulting conditional density function is shown in the right panel of
Figure 1.3. In this case, there is a formula that gives us the conditional distribution, and
it turns out that 𝑌 ∣ 𝑋 follows a (univariate) normal distribution.

10



1.2 Probability review
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Figure 1.3: Illustration of joint (left) and conditional (right) density functions for two random
variables.

The notion of “independence” of two random variables has an intuitive interpretation: it asserts
that knowing one random variable gives us no information about the other one. For example,
if a coin is flipped twice, we usually assume that knowing the outcome of the first flip does not
help predict the outcome of the second flip. Two events 𝐴 and 𝐵 are said to be independent if
Pr(𝐴, 𝐵) = Pr(𝐴) Pr(𝐵), and an analogous definition exists for two random variables.

Definition 1.4

Let 𝑋 and 𝑌 be two random variables with range 𝒮. 𝑋 and 𝑌 are independent if, for
all 𝑥, 𝑦 ∈ 𝒮,

• Discrete case:
Pr(𝑋 = 𝑥, 𝑌 = 𝑦) = Pr(𝑋 = 𝑥) Pr(𝑌 = 𝑦);

• Continuous case:
𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦).

The definition of independence can also be rewritten in terms of conditional probability, which
makes the connection to the common language definition of the term more explicit. If 𝑋 and
𝑌 are independent then, in the discrete case,

Pr(𝑋 = 𝑥 ∣ 𝑌 = 𝑦) = Pr(𝑋 = 𝑥),

and, in the continuous case,
𝑓𝑋∣𝑌 (𝑥 ∣ 𝑌 = 𝑦) = 𝑓𝑋(𝑥).

That is, the conditional distribution of 𝑋 ∣ 𝑌 and the marginal distribution of 𝑋 are the
same. Independence is symmetric, so we could also rewrite this to find that the conditional
distribution of 𝑌 ∣ 𝑋 and the marginal distribution of 𝑌 are equal. In both cases, knowing one
of the two random variables does not change the distribution of the other one.

11



1 Background

The law of total probability is a useful result to obtain the marginal probability of an event,
based on conditional probabilities.

Proposition 1.1: Law of total probability

Let 𝐵1, 𝐵2, … , 𝐵𝐾 be events that partition the sample space. That is, the 𝐵𝑖 are mutually
exclusive (pairwise intersections are empty), and their union is equal to the sample space.
Then, for any event 𝐴,

Pr(𝐴) =
𝐾

∑
𝑘=1

Pr(𝐴 ∣ 𝐵𝑘) Pr(𝐵𝑘).

The law of total probability can also be written in terms of probability density/mass functions.
Let 𝑋 ∈ 𝒮𝑋 and 𝑌 ∈ 𝒮𝑌 be two random variables. In the discrete case, we have

Pr(𝑌 = 𝑦) = ∑
𝑥∈𝒮𝑋

Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) Pr(𝑋 = 𝑥),

and, in the continuous case,

𝑓𝑌 (𝑦) = ∫
𝒮𝑋

𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑋 = 𝑥)𝑓𝑋(𝑥) 𝑑𝑥,

for all 𝑦 ∈ 𝒮𝑌 .

Example 1.6

Let’s say that you go to sleep before 11pm 40% of the time, between 11pm and 1am 40%
of the time, and after 1am 20% of the time. The probability that you arrive late to the
morning lecture is 0.05 if you go to sleep before 11pm, 0.2 if you go to sleep between
11pm and 1am, and 0.5 if you go to sleep after 1am.

What is the probability that you will be late to the morning lecture on a given day?

We first need to introduce some mathematical notation. Let 𝑋 be the random variable
equal to 0, 1, or 2 if you go to sleep before 11pm, between 11pm and 1am, or after 1am,
respectively. Let 𝑌 be the random variable equal to 0 if you are late and 1 if you are not.
We can now write the information in the question as probability statements about 𝑋 and
𝑌 :

⎧{{
⎨{{⎩

Pr(𝑋 = 0) = 0.4
Pr(𝑋 = 1) = 0.4
Pr(𝑋 = 2) = 0.2

and

⎧{{
⎨{{⎩

Pr(𝑌 = 0 ∣ 𝑋 = 0) = 0.05
Pr(𝑌 = 0 ∣ 𝑋 = 1) = 0.2
Pr(𝑌 = 0 ∣ 𝑋 = 2) = 0.5

12



1.3 Introducing stochastic processes

We are interested in Pr(𝑌 = 0), which we can calculate using the law of total probability:

Pr(𝑌 = 0) =
2

∑
𝑥=0

Pr(𝑌 = 0 ∣ 𝑋 = 𝑥) Pr(𝑋 = 𝑥)

= 0.05 × 0.4 + 0.2 × 0.4 + 0.5 × 0.2
= 0.2

That is, there is a 20% probability that you will be late on a given day.

1.3 Introducing stochastic processes

Definition 1.5

A stochastic process (𝑋𝑡) is a collection of random variables, indexed by time 𝑡.

If 𝑡 is defined over a countable set (e.g., 𝑡 ∈ {0, 1, 2, … }), then we call (𝑋𝑡) a discrete-
time stochastic process.

If 𝑡 is defined over an uncountable set (e.g., 𝑡 ∈ ℝ+), then (𝑋𝑡) is a continuous-time
stochastic process.

We will study discrete-time processes in Chapters 2 and 5, and continuous-time processes in
Chapters 3 and 4. In the discrete-time case, we will generally use the letter 𝑛 to index time,
i.e., we will write the stochastic process as (𝑋𝑛). Discrete-time processes usually rely on the
assumption that the random variables in the sequence are on a regular time grid, and so we
almost always define 𝑛 over the non-negative integers, so that one time interval corresponds to
one unit of time.

The simplest possible stochastic process is a sequence of independent, identically distributed
random variables {𝑋1, 𝑋2, 𝑋3, … }, e.g., 𝑋𝑡 ∼ 𝑁(0, 1). This is not a particularly interesting
process, and we will usually focus on cases where there is some dependence between the 𝑋𝑡,
as this is key to model the evolution of many real-life phenomena. We will discuss how the
dependence can be modelled in later chapters.

Notation

We denote a stochastic process as (𝑋𝑡), or 𝑋, or (𝑋𝑡)𝑡≥0. This refers to the process,
whereas 𝑋𝑡 refers to the value of the process at time 𝑡.

We often visualise stochastic processes using line graphs with time on the x axis and the value
of the process on the y axis, like in the population modelling example at the beginning of this

13



1 Background

chapter. The line could for example be obtained by simulating from the stochastic process, or
it could be a real data set that we would like to analyse using the stochastic process as a model.
Just like it is important to distinguish between a random variable and the value it takes, it is
important to separate a stochastic process and the line on that graph. We can think of the
stochastic process as the recipe that tells us how to generate the lines. We call each line a
realisation, or a sample path, from the stochastic process.

Terminology

A stochastic process is often also called a random process, and we will use these two
terms interchangeably.

Another related concept is the time series. There is no universally-accepted definition of
a time series, but the term is most often used to refer to a realisation from a discrete-time
stochastic process. Sometimes, a stochastic process is called a time series process, but
this is less common. We often talk of time series data, however, to refer to a series of
observations made at regular time intervals (e.g., temperature over time).

Definition 1.6

The state space 𝒮 of a stochastic process (𝑋𝑡) is the set of values that 𝑋𝑡 can take, i.e.,
𝑋𝑡 ∈ 𝒮.

If 𝒮 is countable, then we call (𝑋𝑡) a discrete-space (or discrete-valued) stochastic
process.

If 𝒮 is uncountable, then we call (𝑋𝑡) a continuous-space (or continuous-valued) stochas-
tic process.

It is important to distinguish between the set over which 𝑡 is defined, and the state space 𝒮
over which 𝑋𝑡 is defined. Whether each is discrete or continuous is unrelated, and should be
assessed separately.

Example: We can think of situations where either space and/or time should be discrete or
continuous.

discrete time continuous time

discrete space chess disease status
continuous space stock price particle movement

We will spend more time focusing on discrete-space stochastic processes, as they tend to be a
little easier to study, but many of the results can be extended to continuous space.

14



1.3 Introducing stochastic processes

Note that, while time is always a quantitative (discrete or continuous) variable, 𝑋𝑡 can be:

1. qualitative; e.g., “sick”/“healthy”, or position of piece on chess board;
2. quantitative discrete; e.g., number of students in a lecture;
3. quantitative continuous; e.g., daily temperature.

When the process is qualitative, we usually write 𝒮 = {0, 1, 2 … } for simplicity; you can simply
think of 𝑋𝑡 as the random variable that associates a non-negative integer value to each possible
category (e.g., “sick” is 0 and “healthy” is 1).

15





2 Discrete-time Markov processes

We first consider the case of a discrete-time stochastic process (𝑋𝑛)𝑛∈ℕ, defined over a countable
state space 𝒮 (i.e., 𝑋𝑛 ∈ 𝒮). In this chapter, we denote the time index 𝑛 rather than 𝑡 as a
reminder that time is discrete. We will later cover the case of an uncountable state space
(Section 2.6), and continuous-time processes (Chapter 4).

2.1 Introduction

A key feature of a stochastic process is its dependence structure, i.e., how successive values
of the process depend on each other. The simplest assumption would be that the 𝑋𝑛 are
independent random variables, but this is an unrealistic premise in many situations. The next
simplest assumption would be that 𝑋𝑛+1 is dependent on 𝑋𝑛, but not on previous values of the
process (at least, not conditional on 𝑋𝑛). This is called the Markov assumption, and we will see
that it captures the dependence of many real-world processes, despite its apparent simplicity.

2.1.1 Definition

Definition 2.1

A discrete-time stochastic process (𝑋𝑛) is called a Markov process if it satisfies

Pr(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛, 𝑋𝑛−1, … , 𝑋0) = Pr(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛),

for all 𝑗 ∈ 𝒮. This is called the Markov property or Markov assumption.

There are several ways we could describe this property in words:

• 𝑋𝑛 contains all the information we need about the history of the process to determine
the distribution of 𝑋𝑛+1;

• the future is independent of the past, conditionally on the present;
• the process has no memory (the Markov property is sometimes called “memorylessness”).

17



2 Discrete-time Markov processes

Example 2.1

1. Perhaps the most common textbook example of a Markov chain is a simplified
weather model. Let’s assume that the weather on a given day is either sunny or
cloudy, and that tomorrow’s weather depends on today’s weather, but that is is
independent of previous days (conditionally on today). This system can be modelled
with a Markov chain with state space 𝒮 = {sunny, cloudy}.

2. Consider the following game. You repeatedly throw a die; if it falls on 6, you win
$10 and, if it falls on any other number, you lose $1. Let 𝑋𝑛 be the amount you
have won (or lost) after 𝑛 rounds, starting from 𝑋0 = 0. The process (𝑋𝑛) satisfies
the Markov property because, if you know 𝑋𝑛, knowing 𝑋𝑛−1, 𝑋𝑛−2, … does not
give you any extra information to predict what 𝑋𝑛+1 will be. (Try to write the
conditional distribution of 𝑋𝑛+1 given 𝑋𝑛 in this example.)

By abuse of language, the Markov property is sometimes described by saying that 𝑋𝑛+1 only
depends on 𝑋𝑛 and not on previous values of the process (𝑋𝑛−1, 𝑋𝑛−2, …). Note that, in this
version, there is no explicit mention of the conditional nature of this statement. If we do not
condition on 𝑋𝑡, then 𝑋𝑛+1 is in fact dependent on 𝑋𝑛−1, as will become clearer later.

We often use the word “state” when describing Markov processes, and it can refer to two
things:

• the state of the process at time 𝑛 is its value 𝑋𝑛;
• the states of the process are elements of its state space (e.g., “sunny” and “cloudy” in the

weather example).

We can then rephrase the Markov property as: the state of the process at time 𝑛 + 1 is
independent of its state at time 𝑛 − 1 (and before), conditional on its state at time 𝑛.

In the definition of a Markov process that we gave above, the process is assumed to be defined
over a countable set 𝒮. An important special case is when 𝒮 is finite, i.e., the process can take on
a finite number of values. In such a case, we sometimes refer to a 𝑁 -state Markov process for a
process defined over a set of size 𝑁 . For Markov processes over countable (finite or infinite) sets,
it is often convenient to denote the state space using the integers, e.g., 𝒮 = {0, 1, 2} or 𝒮 = ℤ.
Despite this notation, it is important to remember that, in many applications, the states are
qualitative rather than quantitative, and the integers are merely indices to distinguish them.
We can also sometimes label the states using letters or some other symbols to make this more
explicit.
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2.1 Introduction

Example 2.2: random walks

Random walks are a broad class of stochastic processes, which are widely used in science.
Here we consider two examples, to illustrate Markov processes with finite or infinite state
spaces.

1. Finite state space: Consider the position of a player’s token on a Monopoly
board. The board has 40 squares in total and, at each round, the player moves
between 2 and 12 squares forward based on the throw of two dice (ignoring other
special rules). The board is a loop, so the 40th square is next to the 1st. If we
let 𝑋𝑛 ∈ {0, 1, … , 39} be the position of the token after 𝑛 rounds, then (𝑋𝑛) is a
Markov process.

2. Countably infinite state space: Let 𝑋𝑛 be the number of pandas in the world
on day 𝑛, and assume that, on a given day, the population can increase by 1 with
probability 𝑝, decrease by 1 with probability 𝑞, or stay the same with probability
1 − 𝑝 − 𝑞. If the population decreases to 0, then it cannot change anymore. This
defines a Markov process over the non-negative integers.

Terminology: Markov process and Markov chain

The term “Markov chain” is used very commonly, but its meaning is somewhat inconsistent.
Depending on the source, it can refer to:

1. any Markov process;
2. a Markov process with discrete state space;
3. a Markov process in discrete time.

In these notes, we follow the first interpretation, and use Markov chain interchangeably
with Markov process.

Due to the Markov property, the dynamics of a Markov process with countable state space
can be specified in terms of the probabilities of moving between any two states over one time
interval, given by Pr(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛 = 𝑖) for any 𝑖, 𝑗 ∈ 𝒮. If the state space is of finite size
|𝒮| = 𝑁 , there are 𝑁2 such probabilities.

Definition 2.2

The one-step transition probability from state 𝑖 to state 𝑗 is

𝑃𝑖𝑗 = Pr(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛 = 𝑖)

for 𝑖, 𝑗 ∈ 𝒮.
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2 Discrete-time Markov processes

The one-step transition probability matrix is

𝑃 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑃00 𝑃01 𝑃02 ⋯
𝑃10 𝑃11 𝑃12 ⋯
𝑃20 𝑃21 𝑃22 ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

We also call it the transition matrix.

Remark: The transition probabilities are subject to the following constraints.

• 𝑃𝑖𝑗 ∈ [0, 1], for any 𝑖, 𝑗 ∈ 𝒮
• ∑

𝑗∈𝒮
𝑃𝑖𝑗 = 1, for any 𝑖 ∈ 𝒮

The first point follows from the definition of probabilities, and the second point reflects the
necessity that 𝑋𝑛+1 ∈ 𝒮 (i.e., there must be a 𝑗 ∈ 𝒮 for which 𝑋𝑛+1 = 𝑗). A square matrix
whose entries satisfy those two conditions is called a stochastic matrix (or sometimes a “right”
stochastic matrix). Each row of a stochastic matrix is a (discrete) probability distribution.

If the state space of the Markov chain is finite, i.e., |𝒮| = 𝑁 < ∞, then the transition probability
matrix is an 𝑁 × 𝑁 matrix. In the case of an countable infinite state space, however, the
matrix is infinite (i.e., it has an infinite number of rows and columns). Although this seems
to complicate things, most matrix operations are still well defined for infinite matrices, and
the results described below hold for any countable state space. In practice, the main challenge
associated with the infinite state space is that we cannot write out the full matrix, either by
hand or to store it in a computer.

In this chapter, we will assume that the transition probabilities do not depend on the time step
𝑛, i.e., they are constant through time.

Definition 2.3

A Markov chain is time-homogeneous if, for any 𝑛 = 0, 1, …,

Pr(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛 = 𝑖) = Pr(𝑋1 = 𝑗 ∣ 𝑋0 = 𝑖)

where 𝑖, 𝑗 ∈ 𝒮.

That is, the probability of going from state 𝑖 to state 𝑗 does not depend on 𝑛.

It is common to represent a Markov chain as a transition graph, with one node for each state,
and arrows showing all possible transitions. This can be viewed as a weighted graph, where
the weight of each edge is the corresponding transition probability.
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2.1 Introduction

Example: Consider the 3-state Markov chain with transition probability matrix

𝑃 =
⎛⎜⎜⎜
⎝

0.5 0.5 0
0 0.3 0.7

0.1 0 0.9

⎞⎟⎟⎟
⎠

If we label the three states as “a”, “b”, and “c”, we can represent the transition structure of
the process as shown in Figure 2.1.

Figure 2.1: Example transition graph of 3-state Markov chain

A realisation from a Markov chain is a sequence of states for some set of time indices. For
example, (a, a, b, c, c, c, c, c, c, a) is one possible realisation of the 3-state Markov chain shown
in Figure 2.1 over 10 time steps. We can display those as time series graphs, with time along
the 𝑥 axis and state along the 𝑦 axis, as long as we remember that the ordering of the states
is often arbitrary. Four example realisations from the Markov chain of Figure 2.1 are shown in
Figure 2.2.

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

a

b

c

n

X
n

Figure 2.2: Four realisations of a 3-state Markov process, where the initial state was chosen at
random.

Figure 2.2 makes it clear that, if we don’t condition on 𝑋𝑛, then 𝑋𝑛+1 is dependent on previous
states. For example, if all we know is that 𝑋𝑛−1 = c (and we don’t know 𝑋𝑛), this still gives
us quite a bit of information about 𝑋𝑛+1. In this example, we know that 𝑋𝑛+1 is most likely
to also be c, because the process tends to stay in that state for many consecutive time steps.
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2 Discrete-time Markov processes

2.1.2 Holding times

One way to understand the Markov assumption, and whether it is violated in a given context, is
to think about how long the process spends in a given state (before switching to another state).
Let 𝐷𝑖 denote the number of consecutive time steps spent in state 𝑖, called the holding time
(or dwell time). The event 𝐷𝑖 = 1 corresponds to the situation where the process switches out
of state 𝑖 in the first time step, which has probability 1 − 𝑃𝑖𝑖 (i.e., one minus the probability
of remaining in state 𝑖). The event 𝐷𝑖 = 2 requires remaining in state 𝑖 in the first time step
(with probability 𝑃𝑖𝑖) and switching out of state 𝑖 in the second time step (with probability
1 − 𝑃𝑖𝑖), so it has probability 𝑃𝑖𝑖(1 − 𝑃𝑖𝑖). We can repeat this reasoning to find the general
formula:

Pr(𝐷𝑖 = 𝑘) = 𝑃 𝑘−1
𝑖𝑖 (1 − 𝑃𝑖𝑖),

because 𝐷𝑖 = 𝑘 means that the process remained in state 𝑖 for 𝑘 − 1 time steps, and then
switched to another state.

This is the probability mass function of the geometric distribution with parameter 1 − 𝑃𝑖𝑖.
Figure 2.3 shows the graph of this function for different values of the probability parameter
𝑝 = 1 − 𝑃𝑖𝑖. Although the decay rate of the distribution depends on the transition probabil-
ity, its mode is always 1, i.e., the most likely holding time is 1 regardless of the transition
probabilities.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

x

P
r(

X
 =

 x
)

Geometric distribution

Figure 2.3: Probability mass function of the geometric distribution, for different values of the prob-
ability parameter.

The mean of the geometric distribution is the inverse of the probability parameter so, in the
context of the Markov chain,

𝐸[𝐷𝑖] = 1
1 − 𝛾𝑖𝑖

For example, the expected holding times for the Markov chain shown in Figure 2.1 are 𝐸[𝐷1] =
1/(1 − 0.5) = 2, 𝐸[𝐷2] = 1/(1 − 0.3) = 1.43, and 𝐸[𝐷3] = 1/(1 − 0.9) = 10. This is consistent
with the patterns observed in the simulated realisations of Figure 2.2, where the process tends
to spend much longer in state 3 than in states 1 and 2.
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2.1 Introduction

2.1.3 Higher-order dependence

The Markov property might seem like a strong assumption in many situations. After all,
most real-world processes have very complex dependence structures. For example, tomorrow’s
weather likely depends on more than just today’s weather. But it is important to remember that
stochastic models, like any models, are only supposed to be an approximation. The Markov
property turns out to be a pretty good approximation to many complex phenomena.

There are several ways to relax the Markov assumption while preserving some of the convenient
mathematical properties of Markov chains.

Definition 2.4

A discrete-time stochastic process (𝑋𝑛) is called a 𝑝-th order Markov process if it
satisfies

Pr(𝑋𝑛 = 𝑗 ∣ 𝑋𝑛−1, 𝑋𝑛−2, … , 𝑋0) = Pr(𝑋𝑛 = 𝑗 ∣ 𝑋𝑛−1, … , 𝑋𝑛−𝑝),

for all 𝑗 ∈ 𝒮.

Higher-order Markov processes might seem considerably more flexible than (first-order) Markov
processes, but they are also harder to implement. Fortunately, they can be written as first-order
Markov processes with an expanded state space, such that all results in this chapter can be
applied to them directly. To convert a 𝑝-th order Markov chain into a first-order Markov chain,
we can define the new state space to be the set of all possible sequences of 𝑝 states (let’s call
these new states “expanded states”). So, we will focus on first-order Markov processes, keeping
in mind that they can be used very generally.

Example 2.3

For example, if we have a second-order Markov chain with states {A, B, C}, the expanded
state space would be {AA, AB, AC, BA, BB, BC, CA, CB, CC}. Once we have defined
the expanded state space, we can define a first-order Markov chain where each state is
one of the expanded states (i.e., a sequence of 𝑝 states). By expanding the state space
in this way, we can convert a higher-order Markov chain into a first-order Markov chain,
which is easier to study. Note that not all transitions are possible in this new first-order
Markov chain; for example, the process cannot transition from AA to BA.

If we label the states from 1 to 9 in the order shown above, the transition probability
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2 Discrete-time Markov processes

matrix for this example would be

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑃11 𝑃12 𝑃13 0 0 0 0 0 0
0 0 0 𝑃24 𝑃25 𝑃26 0 0 0
0 0 0 0 0 0 𝑃37 𝑃38 𝑃39

𝑃41 𝑃42 𝑃43 0 0 0 0 0 0
0 0 0 𝑃54 𝑃55 𝑃56 0 0 0
0 0 0 0 0 0 𝑃67 𝑃68 𝑃69

𝑃71 𝑃72 𝑃73 0 0 0 0 0 0
0 0 0 𝑃84 𝑃85 𝑃86 0 0 0
0 0 0 0 0 0 𝑃97 𝑃98 𝑃99

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where 𝑃11 = Pr(𝑋𝑛 = AA ∣ 𝑋𝑡𝑛1 = AA), 𝑃12 = Pr(𝑋𝑛 = AB ∣ 𝑋𝑛−1 = AA), and so on.

This approach can in principle be used to represent any high-order Markov process, but
the state space grows rapidly with the number of states and the order.

2.1.4 Simulating from a Markov process

Given an initial distribution and a transition probability matrix, we can simulate from a Markov
chain by iteratively sampling from a categorical distribution, e.g., using the sample() function
in R. The code chunk below shows an example simulation over 100 time steps, for a 3-state
Markov chain with state space 𝒮 = {0, 1, 2}, initial distribution

𝑢(0) = (0.2, 0.2, 0.4)

and transition probability matrix

𝑃 =
⎛⎜⎜⎜
⎝

0.8 0.1 0.1
0.3 0.7 0
0 0.2 0.8

⎞⎟⎟⎟
⎠

This outputs one realisation from the process, and changing the random seed would yield a
different realisation.

# Set random seed for reproducibility
set.seed(67)

# Define parameters
n <- 100
u0 <- c(0.2, 0.2, 0.4)

24



2.2 Looking into the future

P <- matrix(c(0.8, 0.1, 0.1,
0.3, 0.7, 0,
0, 0.2, 0.8),

nrow = 3, byrow = TRUE)

# Initialise
X <- rep(NA, length = n)
X[1] <- sample(1:3, size = 1, prob = u0)

# Loop over time steps
for(i in 2:n) {

# Choose row of transition matrix based on previous state
P_row <- P[X[i-1],]
# Sample new state
X[i] <- sample(1:3, size = 1, prob = P_row)

}

# Minus 1 to get states {0, 1, 2} rather than {1, 2, 3}
X - 1

[1] 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 2 2 2 2 2 2 2 1 1 1 1 1 1
[38] 1 1 1 1 1 0 0 0 0 2 2 2 2 2 2 2 2 1 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 0 1 1 1
[75] 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.2 Looking into the future
The transition probabilities describe what happens to the process over one time interval. With
this information, it seems that we should also be able to say something about the distribution
of the process further into the future (although perhaps with less and less certainty).

2.2.1 Chapman-Kolmogorov Equations

Definition 2.5

The 𝑛-step transition probability from state 𝑖 to state 𝑗 is

𝑃 (𝑛)
𝑖𝑗 = Pr(𝑋𝑚+𝑛 = 𝑗 ∣ 𝑋𝑚 = 𝑖),

for any 𝑚 ≥ 0. It is the probability that the process will be in state 𝑗 after 𝑛 transitions,
given that it started in state 𝑖.

25



2 Discrete-time Markov processes

The 𝑛-step transition probability matrix is denoted as

𝑃 (𝑛) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑃 (𝑛)
00 𝑃 (𝑛)

01 𝑃 (𝑛)
02 ⋯

𝑃 (𝑛)
10 𝑃 (𝑛)

11 𝑃 (𝑛)
12 ⋯

𝑃 (𝑛)
20 𝑃 (𝑛)

21 𝑃 (𝑛)
22 ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

Note that the transition probabilities that we defined previously are 1-step transition probabil-
ities, i.e., we have 𝑃 (1) = 𝑃 and 𝑃 (1)

𝑖𝑗 = 𝑃𝑖𝑗. For any 𝑛, the 𝑛-step transition probabilities can
be derived from the 1-step transition probabilities, and the Chapman-Kolmogorov equations
provide this relationship.

Proposition 2.2 (Chapman-Kolmogorov equations)

The Chapman-Kolmogorov equations are

𝑃 (𝑛+𝑚)
𝑖𝑗 = ∑

𝑘∈𝒮
𝑃 (𝑛)

𝑖𝑘 𝑃 (𝑚)
𝑘𝑗 (2.1)

for any 𝑖, 𝑗 ∈ 𝒮, and any 𝑛, 𝑚 ∈ ℕ.

Equivalently, in matrix notation:

𝑃 (𝑛+𝑚) = 𝑃 (𝑛)𝑃 (𝑚).

Proof

The Chapman-Kolmogorov equations can be viewed as an application of the law of total
probability to the Markov chain.

𝑃 (𝑛+𝑚)
𝑖𝑗 = Pr(𝑋𝑛+𝑚 = 𝑗 ∣ 𝑋0 = 𝑖)

= ∑
𝑘∈𝒮

Pr(𝑋𝑛+𝑚 = 𝑗, 𝑋𝑛 = 𝑘 ∣ 𝑋0 = 𝑖) (a)

= ∑
𝑘∈𝒮

Pr(𝑋𝑛+𝑚 = 𝑗 ∣ 𝑋𝑛 = 𝑘, 𝑋0 = 𝑖) Pr(𝑋𝑛 = 𝑘 ∣ 𝑋0 = 𝑖) (b)

= ∑
𝑘∈𝒮

Pr(𝑋𝑛+𝑚 = 𝑗 ∣ 𝑋𝑛 = 𝑘) Pr(𝑋𝑛 = 𝑘 ∣ 𝑋0 = 𝑖) (c)

= ∑
𝑘∈𝒮

𝑃 (𝑚)
𝑘𝑗 𝑃 (𝑛)

𝑖𝑘

= (𝑃 (𝑛)𝑃 (𝑚))𝑖𝑗

Step (a) is the law of total probability, (b) uses the definition of conditional probability,
and (c) uses the Markov property.
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2.2 Looking into the future

In particular, we have
𝑃 (2) = 𝑃 (1)𝑃 (1) = 𝑃 1𝑃 1 = 𝑃 2,
𝑃 (3) = 𝑃 (2)𝑃 (1) = 𝑃 2𝑃 1 = 𝑃 3,

and so on. By induction, we can prove the following result.

Corrolary

The 𝑛-step transition probability matrix of a Markov chain is

𝑃 (𝑛) = 𝑃 𝑛

That is, the 𝑛-step transition probability matrix 𝑃 (𝑛) can be computed by multiplying the
transition probability 𝑃 by itself 𝑛 times.

Note that this does not imply that 𝑃 (𝑛)
𝑖𝑗 = 𝑃 𝑛

𝑖𝑗 for any 𝑖 and 𝑗. This is generally not the case,
and the full matrix needs to be taken to the power of 𝑛 to obtain 𝑃 (𝑛)

𝑖𝑗 .

2.2.2 Marginal state distribution

The transition probabilities of the Markov chain define the conditional distribution of the state
𝑋𝑛 given the state 𝑋𝑛−1. In some cases, we are interested in the marginal distribution (i.e.,
unconditional distribution) of 𝑋𝑛.

Notation

For a Markov chain (𝑋𝑛) with state space 𝒮, we denote as 𝑢(𝑛) the marginal distribution
of the random variable 𝑋𝑛, i.e.,

𝑢(𝑛)
𝑖 = Pr(𝑋𝑛 = 𝑖), for 𝑖 ∈ 𝒮.

Note that we interpret 𝑢(𝑛) as a row vector (which will be important for calculations later).
By definition of probability distributions, we have 𝑢(𝑛)

𝑖 ≥ 0 for all 𝑖, and ∑𝑖∈𝒮 𝑢(𝑛)
𝑖 = 1.

To derive the marginal distribution of 𝑋𝑛, we must fix the initial distribution of the chain, 𝑢(0).
In practice, we often know what the initial value of the process is, so the initial distribution is
set to a vector where all but one entries are zero.

Proposition 2.3

Let (𝑋𝑛) be a Markov chain with initial distribution 𝑢(0) and transition probability matrix
𝑃 . For all 𝑛 ≥ 0, the marginal distribution of 𝑋𝑛 is 𝑢(𝑛) = 𝑢(0)𝑃 𝑛.
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2 Discrete-time Markov processes

Proof

𝑢(𝑛)
𝑗 = Pr(𝑋𝑛 = 𝑗)

= ∑
𝑖∈𝒮

Pr(𝑋𝑛 = 𝑗 ∣ 𝑋0 = 𝑖) Pr(𝑋0 = 𝑖) (a)

= ∑
𝑖∈𝒮

𝑃 (𝑛)
𝑖𝑗 𝑢(0)

𝑖 (b)

= (𝑢(0)𝑃 𝑛)𝑗,
where (a) is the law of total probability, and (b) follows from the Chapman-Kolmogorov
equations.

From this property, we can see that the Markov chain is fully specified by the initial distribu-
tion 𝑢(0) and the transition probability matrix 𝑃 . That is, given those two parameters, the
distribution of the chain can be computed at any time step 𝑛 ≥ 0.

To illustrate the idea of marginal distribution, we use the Markov chain defined by random
moves of a piece on a chess board. The state space of the process is the list of squares on the
board, i.e., there are 8 × 8 = 64 states, and the 64 × 64 = 4096 transition probabilities are
defined by the rules for the chosen piece. We assume that the piece is moved at each time
step to any of the allowed squares with equal probability. For example, Figure 2.4 shows the
transition probability matrices for a king and a knight.

King Knight

Figure 2.4: Visualisation of transition probability matrices for king (left) and knight (right) on a
chess board, where non-zero elements are shown in dark. Note that the way the squares
of the board are ordered as states is arbitrary, so the matrix would look different if
another convention was used.

Given the starting position of the piece, we can use the last proposition to compute its distri-
bution on the board after one move, two moves, and so on. The distribution is a vector of the
probabilities of being in the different sequares of the board, which add up to 1. If we choose
the square where the piece starts, the initial distribution is a vector of length 64, where 63
elements are set to zero (all expect the starting position). Then, we iteratively multiply that
vector by the transition probability matrix to obtain the subsequent distributions.
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n = 0

King
n = 1 n = 2 n = 5 n = 10 n = 99 n = 100

n = 0

Knight
n = 1 n = 2 n = 5 n = 10 n = 99 n = 100

Figure 2.5: Distribution of position on chess board in successive time steps, given some initial position
and movement rules.

Figure 2.5 shows the distributions of a king and a knight that start from some given square,
and take an allowable move at random at each time step. The king has what we might call
“diffusive” behaviour, and its distribution spreads over the board with time. After many time
steps, it is almost equally likely to be in any of the non-edge squares of the board; the edge and
corner squares are less likely because they are less connected. The distribution of the knight
also spreads over the board with time, but it follows a different alternating pattern. This is
because, due to its movement rules, a knight that’s on a black square has to move to a white
square at the next time, whereas a knight that’s on a white square has to move to a black
square. So, if the piece starts on a black square, all white squares have probability zero when
𝑛 is even, and all black squares have probability zero when 𝑛 is odd.

This example highlights several interesting phenomena that we will study in more detail in later
sections. In particular, it seems like there is a key difference in the long-term behaviour of the
Markov chain for the king and the knight: the distribution of the king stabilises as 𝑛 grows,
whereas the distribution of the knight does not.

2.3 Interstate travel

To describe the long-term behaviour of a Markov chain, we need to understand how states are
related, i.e., how often the process travels from one state to another (not just over one time
interval). In this section, we introduce several definitions that will become important in the
next section to decide how the distribution of a given Markov chain evolves in the long run.
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2 Discrete-time Markov processes

2.3.1 Communication and reducibility

Definition 2.6

We say that state 𝑗 is accessible from state 𝑖 if 𝑃 (𝑛)
𝑖𝑗 > 0 for some 𝑛 ≥ 0, i.e., if there is

positive probability of travelling from 𝑖 to 𝑗 in a finite number of steps.

Definition 2.7

We say that two states 𝑖 and 𝑗 communicate if 𝑖 is accessible from 𝑗 and 𝑗 is accessible
from 𝑖, and we denote this as 𝑖 ↔ 𝑗.

The relation of communication satisfies the following three properties.

1. Reflexivity: Every state communicates with itself.

2. Symmetry: If state 𝑖 communicates with state 𝑗, then 𝑗 communicates with 𝑖.

3. Transitivity: If state 𝑖 communicates with state 𝑗, and state 𝑗 communicates with state
𝑘, then 𝑖 communicates with 𝑘.

A binary relation that satisfies these three properties is called an equivalence relation, and it
can be used to divide the state space into equivalence classes.

Definition 2.8

Two states that communicate are in the same class. This creates a partition of the state
space into communicating classes.

The transition graph of a Markov process can be used to identify communicating classes.

Example: Figure 2.6 shows a 5-state Markov process with states {A, B, C, D, E}, where the
transition probability matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 0 0

0.5 0 0 0 0.5
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This Markov process has two communicating classes: {A, B, C} and {D, E}. A and E are not
in the same class because, while it is possible to travel from A to E (through B and C), it is
not possible to travel from E to A.

Definition 2.9

A chain is irreducible if it only has one class, i.e., if all states communicate.
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2.3 Interstate travel

Figure 2.6: Illustration of communicating classes.

We will often focus on irreducible Markov chains later, when we study their long-term behaviour.
It is a little more complicated to think about it for reducible processes, where we have to figure
out which class the process will get stuck in (e.g., {E, D} in Figure 2.6), how long we can expect
it will take to get stuck there, and so on. These are also problems that have been studied, but
we will not cover them in this course.

A state 𝑖 ∈ 𝒮 is called an absorbing state if 𝑃𝑖𝑖 = 1, i.e., if the process that has reached 𝑖
can never leave. If a Markov chain has an absorbing state, then it is not irreducible, because
it is not possible to travel from the absorbing state to any other state. For example, we can
represent the board game Snakes and Ladders as a Markov chain, in which the final square is
an absorbing state (because the player stays there once they’ve reached it).

2.3.2 Transience and recurrence

We may want to know whether, starting in a given state, the process will ever return to it. We
define the first passage time (or first hitting time) in state 𝑖 as the first positive time at which
the state is visited by the chain; that is, we define 𝜏𝑖 = min{ 𝑛 > 0 ∶ 𝑋𝑛 = 𝑖 }, and set 𝜏𝑖 = ∞
if 𝑋𝑛 ≠ 𝑖 for all 𝑛 > 0. Further, let 𝑓𝑖 be the probability that, starting in state 𝑖, the chain
will ever return to state 𝑖, i.e.,

𝑓𝑖 = Pr(𝜏𝑖 < ∞ ∣ 𝑋0 = 𝑖).

Definition 2.10

State 𝑖 is called recurrent if 𝑓𝑖 = 1, i.e., if the process will return to state 𝑖 with
probability 1.

The state is called transient if 𝑓𝑖 < 1, i.e., if there is a non-zero probability that the
process will never visit 𝑖 again.

Example: In the Markov process with transition graph shown in Figure 2.7, A and B are
transient states, and C, D and E are recurrent state. If the process starts in A or B, there is a
non-zero probabilility that it will never return (if it transitions to C). If it starts in C, D or E,
the process will revisit the state with probability 1.
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2 Discrete-time Markov processes

Figure 2.7: Illustration of recurrent (C, D, E) and transient (A, B) states.

We can show that a recurrent state 𝑖 will be visited infinitely many times by the process, if it
starts in 𝑖. Indeed, in that case, there is a probability 1 that the process will return to state 𝑖
after some number of transitions, by definition of a recurrent state. Once it returns to 𝑖, the
process is back to where it started, and again there is a probability 1 that the process will visit
𝑖 a third time. We can repeat this reasoning to show that the process will infinitely return to
any recurrent state 𝑖.

We can rewrite this statement in terms of transition probabilities. For any 𝑛 ≥ 0, define the
indicator variable

𝐼𝑛 =
⎧{
⎨{⎩

1 if 𝑋𝑛 = 𝑖,
0 otherwise,

such that the total number of time steps spent in state 𝑖 is ∑∞
𝑛=0 𝐼𝑛. Then,

𝐸 [
∞

∑
𝑛=0

𝐼𝑛 ∣ 𝑋0 = 𝑖] =
∞

∑
𝑛=0

𝐸 [𝐼𝑛 ∣ 𝑋0 = 𝑖]

=
∞

∑
𝑛=0

Pr(𝑋𝑛 = 𝑖 ∣ 𝑋0 = 𝑖)

=
∞

∑
𝑛=0

𝑃 (𝑛)
𝑖𝑖

This leads to an alternative definition for recurrence and transience.

Proposition 2.4

State 𝑖 is recurrent if and only if
∞

∑
𝑛=0

𝑃 (𝑛)
𝑖𝑖 = ∞.

State 𝑖 is transient if and only if
∞

∑
𝑛=0

𝑃 (𝑛)
𝑖𝑖 < ∞.

Note that, when the state space is finite, transient states only exist for reducible Markov chains,
i.e., when there is no possible path from one state to another. However, when the state space
is (countably) infinite, it is possible to have a transient state in an irreducible chain.
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Example 2.4: transience with infinite state space

In an irreducible transient Markov chain, there is a positive probability of travelling from
any state to any state, but there is also a positive probability of never visiting any given
state again. One example is the Markov chain over 𝒮 = ℕ, where, for each state 𝑖,

⎧{
⎨{⎩

Pr(𝑋𝑛+1 = 𝑖 + 1 ∣ 𝑋𝑛 = 𝑖) = 0.8
Pr(𝑋𝑛+1 = 𝑖 − 1 ∣ 𝑋𝑛 = 𝑖) = 0.2

That is, at each time step, the process has a 80% probability of moving one unit to the
right, and a 20% probability of moving one unit to the left. (It cannot move to the left
when 𝑋𝑛 = 0, so instead there is a 20% probability of not moving in this case.)

All states communicate, because we can in principle go between any two states in 𝒮, so
this is an irreducible Markov chain. However, because the probability of moving to the
right is larger than 0.5, the chain will move towards larger and larger states, and there is
a positive probability that it will never visit 0 again, for example. A realisation from this
chain over 100 time steps is shown in Figure 2.8.

0
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60

0 25 50 75 100
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n

Figure 2.8: Simulated realisation from example transient Markov chain.

We end this section with a convenient property, which will allow us to talk about the transience
and recurrence of communication classes, rather than individual states.

Proposition 2.5

Transience and recurrence are class properties:
1. if 𝑖 is transient and 𝑖 ↔ 𝑗, then 𝑗 is transient;
2. if 𝑖 is recurrent and 𝑖 ↔ 𝑗, then 𝑗 is recurrent.
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2.3.3 Different types of recurrence

We denote as 𝑚𝑗 the expected number of time steps it will take a chain that started in state 𝑗
to return to state 𝑗, i.e.,

𝑚𝑗 = 𝐸[𝜏𝑗 ∣ 𝑋0 = 𝑗],

where 𝜏𝑗 is the first passage time defined in the previous section.

Definition 2.11

We say that a recurrent state 𝑗 is positive recurrent if 𝑚𝑗 < ∞, and null recurrent if
𝑚𝑗 = ∞.

The distinction between positive and null recurrence only exists for Markov chains with infinite
state spaces. If the state space is finite, then all recurrent states are positive recurrent. The
notion of null recurrent state might be counter-intuitive: if there is positive probability that
we revisit 𝑗, then how can the expected time until this happens be infinite? (Note that there
are many other such examples where expectations defy our intuition, like the St Petersburg
paradox). To understand, we can look at the definitions. We call state 𝑗 recurrent if 𝑓𝑗 = 1
where

𝑓𝑗 = Pr(𝜏𝑗 < ∞ ∣ 𝑋0 = 𝑗)

=
∞

∑
𝑛=0

Pr(𝜏𝑗 = 𝑛 ∣ 𝑋0 = 𝑗)

On the other hand, the expected return time 𝑚𝑗 is

𝑚𝑗 = 𝐸[𝜏𝑗 ∣ 𝑋0 = 𝑗]

=
∞

∑
𝑛=0

𝑛 Pr(𝜏𝑗 = 𝑛 ∣ 𝑋0 = 𝑗)

Then, it’s not too difficult to think of a situation where 𝑓𝑗 = 1 but the expected return time
is infinite. For example, if Pr(𝜏𝑗 = 𝑛 ∣ 𝑋0 = 𝑗) = 6/(𝜋𝑛)2 for 𝑛 ≥ 1, then 𝑓𝑗 = 6/𝜋2 ∑ 1/𝑛2

converges to 1 (see “Basel problem”), while 𝑚𝑗 = 6/𝜋2 ∑ 1/𝑛 diverges to ∞ (see “harmonic
series”). More generally, whether or not 𝑓𝑗 = 1 is not a good indicator of whether 𝑚𝑗 is finite.

Just like for transience and recurrence, positive and null recurrence are class properties, so we
can use those terms to refer to a class rather than just a state.

Proposition 2.6

Let 𝑖, 𝑗 ∈ 𝒮.
1. If 𝑖 is a positive recurrent state and 𝑖 ↔ 𝑗, then 𝑗 is positive recurrent.
2. If 𝑖 is a null recurrent state and 𝑖 ↔ 𝑗, then 𝑗 is null recurrent.

When all states communicate, i.e., when the chain is irreducible, we can go one step further
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and use the terms to refer to the chain.

Definition 2.12

An irreducible Markov chain is called transient if at least one state is transient; it is called
positive recurrent if at least one state is positive recurrent; and it is called null recurrent
if at least one state is null recurrent.

In the definition above, saying that at least one state is transient or recurrent is equivalent to
saying that every state is, because they are class properties.

Example 2.5: null recurrence

The textbook example of a null recurrent Markov chain is the random walk over 𝒮 = ℤ;
for any 𝑖 ∈ ℤ, the transition probabilities are

⎧{
⎨{⎩

Pr(𝑋𝑛+1 = 𝑖 + 1 ∣ 𝑋𝑛 = 𝑖) = 0.5
Pr(𝑋𝑛+1 = 𝑖 − 1 ∣ 𝑋𝑛 = 𝑖) = 0.5

The chain is recurrent because the probability of returning to any state is 1, but it is null
recurrent because the expected return time is infinite. A simulated realisation from this
process is shown in Figure 2.9.
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Figure 2.9: Simulated realisation from example null recurrent Markov chain.

Example 2.6: positive recurrence

Any irreducible Markov chain with finite state space is positive recurrent. For an example
of a positive recurrent chain with infinite state space, consider the chain over 𝒮 = ℕ with
transition probabilities

⎧{
⎨{⎩

Pr(𝑋𝑛+1 = 𝑖 + 1 ∣ 𝑋𝑛 = 𝑖) = 0.2
Pr(𝑋𝑛+1 = 𝑖 − 1 ∣ 𝑋𝑛 = 𝑖) = 0.8
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2 Discrete-time Markov processes

for any state 𝑖 > 0, and, if 𝑖 = 0, there is a 0.8 probability of remaining at 0, and a 0.2
probability of switching to 1.

Because zero is a dead end in this chain, and because it is more likely to go down than
up, it will not suffer from the same divergence issues that we saw in the transient and null
recurrent examples. This is a positive recurrent chain, and Figure 2.10 shows an example
realisation.

0

1

2

3

0 25 50 75 100
n

X
n

Figure 2.10: Simulated realisation from example positive recurrent Markov chain.

2.3.4 Periodicity

Definition 2.13

A state 𝑖 has period 𝑑 if the number of steps it takes the chain to return to 𝑖 can only
be a multiple of 𝑑. In other words, 𝑑 = gcd{𝑛 ∈ ℕ>0 ∶ 𝑃 (𝑛)

𝑖𝑖 > 0}.

We say that 𝑖 is periodic if 𝑑(𝑖) > 1, and aperiodic if 𝑑(𝑖) = 1.

It turns out that periodicity is also a class property, and so we also use the term to refer to a
communicating class, or to an irreducible Markov chain.

Figure 2.11 shows an example periodic Markov chain. The only way to go from A to A is to
go through B, C and D exactly once, so the period is 4. Figure 2.12 is the transition graph
of a very similar Markov chain, but it has been modified by adding a non-zero probability of
remaining in state B. Then, the period becomes 1 because the chain can take any number of
steps to return to a state, i.e., the chain is aperiodic.

Another example is the difference between the king and knight in the chess example from
Section 2.2.2. The king can take 1, 2, 3, or any number of steps to return to its initial position,
whereas the knight can only return to a position after 2, 4, 6, or any even number of steps. The
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2.4 Long-run properties

Figure 2.11: Periodic Markov chain with period 4.

Figure 2.12: Aperiodic Markov chain.

king’s process is aperiodic, whereas the knight’s is periodic (with period 2).

2.4 Long-run properties
We are often interested in the long-run properties of the Markov chain, such as stability (does
the system always converge to some distribution?) and long-run proportions (how much time
does the process spend in each state on average?). We will link these questions to the concept
of stationary distribution, and show how they can be answered in practice. In this section, we
focus on irreducible aperiodic Markov chains. In this situation, the states must be either all
positive recurrent, all null recurrent, or all transient.

2.4.1 Stationary distribution

Definition 2.15

Let (𝑋𝑛) be a Markov chain with transition probability matrix 𝑃 on 𝒮, and consider the
probability distribution 𝜋 on 𝒮. We say that 𝜋 is a stationary distribution of (𝑋𝑛) if

𝜋𝑃 = 𝜋.

Equivalently, 𝜋 = (𝜋0, 𝜋1, … ) is a stationary distribution if it satisfies

∑
𝑖∈𝒮

𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗, for any 𝑗 ∈ 𝒮.
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2 Discrete-time Markov processes

We use the term “stationary” because it represents an equilibrium. Indeed, if the initial dis-
tribution 𝑢(0) is a stationary distribution of the chain, the distributions at times 𝑛 = 1, 2, …
are

𝑢(1) = 𝑢(0)𝑃 = 𝑢(0),
𝑢(2) = 𝑢(1)𝑃 = 𝑢(0)𝑃 = 𝑢(0),
𝑢(3) = 𝑢(2)𝑃 = 𝑢(0)𝑃 = 𝑢(0),

and so on. That is, if a Markov chain starts in its stationary distribution, then it will re-
main in the stationary distribution. The stationary distribution is also sometimes called the
equilibrium or invariant distribution of the process.

Example 2.7: Calculating the stationary distribution “by hand”

Consider the two-state Markov chain with transition probability matrix

𝑃 = (1 − 𝑝1 𝑝1
𝑝2 1 − 𝑝2

)

where 0 < 𝑝1, 𝑝2 < 1. Find its stationary distribution(s).

We are looking for a vector 𝜋 = (𝜋1, 𝜋2) that satisfies

𝜋𝑃 = 𝜋

⇔ (𝜋1 𝜋2) (1 − 𝑝1 𝑝1
𝑝2 1 − 𝑝2

) = (𝜋1 𝜋2)

⇔
⎧{
⎨{⎩

𝜋1(1 − 𝑝1) + 𝜋2𝑝2 = 𝜋1

𝜋1𝑝1 + 𝜋2(1 − 𝑝2) = 𝜋2

⇔
⎧{
⎨{⎩

𝑝1𝜋1 = 𝑝2𝜋2

𝑝1𝜋1 = 𝑝2𝜋2

The two equations are redundant, so we only keep one of them, and use the constraint
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2.4 Long-run properties

𝜋1 + 𝜋2 = 1 to find the solution:

⎧{
⎨{⎩

𝑝1𝜋1 = 𝑝2𝜋2

𝜋1 + 𝜋2 = 1

⇔
⎧{
⎨{⎩

𝑝1𝜋1 = 𝑝2𝜋2

𝜋2 = 1 − 𝜋1

⇔
⎧{
⎨{⎩

𝑝1𝜋1 = (1 − 𝜋1)𝑝2

𝜋2 = 1 − 𝜋1

⇔
⎧{
⎨{⎩

𝜋1(𝑝1 + 𝑝2) = 𝑝2

𝜋2 = 1 − 𝜋1

⇔ 𝜋 = ( 𝑝2
𝑝1+𝑝2

𝑝1
𝑝1+𝑝2

)

So the Markov chain has a unique stationary distribution 𝜋 given above.

In general, the derivation follows the same steps:
1. write the system of equations 𝜋𝑃 = 𝜋;
2. drop one of the equations;
3. use the row sum constraint to solve the system.

We will see that there are more efficient methods to derive the stationary distribution,
which are particularly useful for models with a large number of states.

What is the connection between the long-term behaviour of the process and its stationary
distribution? The following proposition gives us a link with the limiting distribution of the
process, when it exists.

Proposition 2.7

Assume that 𝑢(𝑛)
𝑖 has a limit for 𝑛 → ∞ for all 𝑖 ∈ 𝒮, and denote it as

𝜋𝑖 = lim
𝑛→∞

𝑢(𝑛)
𝑖 .

Then 𝜋 = (𝜋1, 𝜋2, … ) is a stationary distribution of the chain.

Proof

We will prove this proposition only in the case where 𝒮 is finite, but it also applies to
Markov chains with infinite state spaces.
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2 Discrete-time Markov processes

We first show that 𝜋 is a probability distribution over 𝒮. We have

∑
𝑗∈𝒮

𝜋𝑗 = ∑
𝑗∈𝒮

lim
𝑛→∞

𝑢(𝑛)
𝑗

= lim
𝑛→∞

∑
𝑗∈𝒮

𝑢(𝑛)
𝑗 (a)

= 1, (b)

where we can swap the limit and sum in (a) because 𝒮 is finite, and (b) holds because
𝑢(𝑛) is a probability distribution.

Moreover,
𝜋𝑗 = lim

𝑛→∞
Pr(𝑋𝑛 = 𝑗)

= lim
𝑛→∞

Pr(𝑋𝑛+1 = 𝑗)

= lim
𝑛→∞

∑
𝑖∈𝒮

Pr(𝑋𝑛 = 𝑖)𝑃𝑖𝑗 (a)

= ∑
𝑖∈𝒮

lim
𝑛→∞

Pr(𝑋𝑛 = 𝑖)𝑃𝑖𝑗 (b)

= ∑
𝑖∈𝒮

𝜋𝑖𝑃𝑖𝑗,

where (a) is the law of total probability, and (b) follows from the finiteness of 𝒮 as before.
We can then conclude that 𝜋 is a stationary distribution of the chain.

This result is not particularly useful in practice, because it assumes that we know what the
limiting probabilities are, but it is a good starting point, and we will later see that we can go
the other direction (from the stationary distribution, which we know how to compute, to the
limiting probabilities).

The next theorem outlines the conditions under which an irreducible Markov chain has a sta-
tionary distribution, and the connection between the stationary distribution and the expected
return time. Recall that the expected return time to state 𝑗 is defined as 𝑚𝑗 = 𝐸[𝜏𝑗 ∣ 𝑋0 = 𝑗],
where 𝜏𝑗 = min{𝑛 > 0 ∶ 𝑋𝑛 = 𝑗} is the first passage time to state 𝑗.

Theorem 2.1

An irreducible Markov chain has a stationary distribution 𝜋 if and only if it is positive
recurrent. In this case, there is a unique stationary distribution, with elements

𝜋𝑖 = 1
𝑚𝑖

, for 𝑖 ∈ 𝒮.

We can interpret the connection to the return time as follows: the longer it takes to return to
state 𝑖, the less time the chain will spend in state 𝑖 overall. If the process visits state 𝑖 every
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2.4 Long-run properties

𝑚𝑖 time steps, then it makes sense that the proportion of time spent at 𝑖 is 1/𝑚𝑖.

2.4.2 Limiting probabilities

Theorem 2.2

Let (𝑋𝑛) be an irreducible aperiodic Markov chain with 𝑛-step transition probabilities
𝑃 (𝑛)

𝑖𝑗 for 𝑖, 𝑗 ∈ 𝒮. Then, we have

lim
𝑛→∞

𝑃 (𝑛)
𝑖𝑗 = 1

𝑚𝑗
, for 𝑖, 𝑗 ∈ 𝒮.

The limit does not depend on the starting state 𝑖 so, equivalently, we can write

lim
𝑛→∞

𝑢(𝑛)
𝑗 = 1

𝑚𝑗
, for 𝑗 ∈ 𝒮,

where 𝑢(𝑛) is the probability distribution of 𝑋𝑛.

There are several important implications of this theorem:

1. If the chain is positive recurrent, then we saw in the previous section that 𝜋𝑗 = 1/𝑚𝑗
defines the unique stationary distribution of the process, so lim𝑛→∞ 𝑢(𝑛) = 𝜋. In this
case, the limiting distribution of 𝑋𝑛 and the stationary distribution coincide. This is
very useful, because we usually know how to derive the stationary distribution of the
process from the transition probability matrix.

2. If the chain is transient or null recurrent, then 𝑚𝑗 = ∞, and so lim𝑛→∞ 𝑢(𝑛)
𝑗 = 0 for all

𝑗 ∈ 𝒮. The probability of being in any given state decreases to zero as time goes by.

In the previous theorem, we restricted our attention to aperiodic Markov chain because, in the
case of periodic chains, the limit lim𝑛→∞ Pr(𝑋𝑛 = 𝑖) does not always exist. The following is a
classic example of this situation.

Example 2.8: Periodic Markov chain

Convergence to equilibrium is only guaranteed when the chain is aperiodic. Consider the
chain (𝑋𝑛) with transition probability matrix

𝑃 = (0 1
1 0

)

That is, the evolution of the chain is deterministic: it switches state at each time step.
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2 Discrete-time Markov processes

(𝑋𝑛) has 𝜋 = (0.5, 0.5) as a stationary distribution, because

𝜋𝑃 = (0.5 0.5) (0 1
1 0

) = 𝜋

Intuitively, if there is a 50% probability of being in each state at time 𝑛, there is still a
50% probability of being in each state at 𝑛 + 1.

However, we can show that there is no limiting distribution for this Markov chain, because

𝑃 2 = (1 0
0 1

) , 𝑃 3 = (0 1
1 0

) , 𝑃 4 = (1 0
0 1

) ,

and so on. The state distribution 𝑢(𝑛) alternates between (0, 1) and (1, 0), and so the limit
lim𝑛→∞ 𝑢(𝑛)

𝑖 does not exist.

Another example is the difference between the random walk of a king and the knight on a chess
board, as described in Section 2.2.2. We saw that the knight’s distribution over the board does
not converge as time goes by, because it has a different limit for even and odd 𝑛 (leading to
the alternating pattern in Figure 2.5). This is because its position follows a periodic chain
with period 2. On the other hand, the king’s chain is aperiodic, and it does have a limiting
distribution.

2.4.3 Long-run proportions

Definition 2.16

Consider a Markov chain with state space 𝒮. For any 𝑖 ∈ 𝒮, the 𝑖th long-run proportion
is the proportion of time that the Markov chain spends in the 𝑖th state over the long run,
i.e.,

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑘=0

𝕀{𝑋𝑘=𝑖},

where 𝕀 is the indicator function, i.e.,

𝕀{𝑋𝑘=𝑖} =
⎧{
⎨{⎩

1 if 𝑋𝑘 = 𝑖
0 otherwise.

Note that the question of finding the long-run proportions of a chain, i.e., to know how often
each state will be active if we let it run for a long time, is separate from the question addressed in
the previous section. Indeed, even in cases where the chain does not have a limiting distribution,
the long-run proportions might exist. In the example of a periodic Markov chain where 𝑝12 =
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2.4 Long-run properties

𝑝21 = 1, we saw that there is no limiting distribution, but we can compute the proportion of
time spent in each state. Because the chain switches at every time step, the proportion of time
in each state will converge to 50%. Likewise, the knight moving randomly around a chess board
does have long-term proportions, even though it doesn’t have a limiting distribution.

Theorem 2.3

If (𝑋𝑛) is an irreducible Markov chain, then the long-run proportions are given by

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑘=1

𝕀{𝑋𝑘=𝑖} = 1
𝑚𝑖

, for 𝑖 ∈ 𝒮.

This time, the result does not require aperiodicity. Based on results from the previous sections,
this implies that:

1. For a positive recurrent chain, the long-run proportions coincide with the stationary
distribution.

2. For a transient or null recurrent chain, the long-run proportions are zero.

We will not prove this result, but we can provide some intuition. If 𝜋′
𝑖 is the long-run proportion

of time spent in state 𝑖, then the long-run proportion of transitions that go from 𝑖 to 𝑗 is 𝜋′
𝑖𝑃𝑖𝑗.

If we sum over all 𝑖, this becomes
𝜋′

𝑗 = ∑
𝑖∈𝒮

𝜋′
𝑖𝑃𝑖𝑗

or, in matrix notation, 𝜋′𝑃 = 𝜋′. That is, 𝜋′ is a stationary distribution of the Markov chain.

2.4.4 Calculating the stationary distribution

To compute the limiting distribution of a Markov chain or its long-run proportions, the most
convenient approach is usually to find its stationary distribution. We describe two approaches
to compute the stationary distribution of a Markov chain with finite state space (when it exists),
one based on the eigendecomposition of the transition probability matrix, and one that only
requires inverting a well-chosen matrix.

Method 1: eigendecomposition

Recall that an eigenvector (or right eigenvector) of the square matrix 𝐴 is a non-zero vector 𝑥
such that 𝐴𝑥 = 𝜆𝑥 for some scalar 𝜆; 𝜆 is called the eigenvalue associated with 𝑥. This looks
a little similar to the definition of a stationary distribution, except the stationary distribution
is a left eigenvector of the transition probability matrix (i.e., we left-multiply the transition
matrix). Most eigenanalysis theory and software focuses on right eigenvector but, fortunately,
there is a close connection between right and left eigenvectors. Indeed, 𝑥 is a right eigenvector
of 𝐴 if and only if 𝑥⊺ is a left eigenvector of 𝐴⊺. You can see this using the general identity
(𝐴𝑥)⊺ = 𝑥⊺𝐴⊺.
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2 Discrete-time Markov processes

Finding the stationary distribution of a Markov chain is therefore equivalent to finding the
eigenvector of 𝑃 ⊺ associated with the eigenvalue 1. Note that eigenvectors are defined up to a
multiplicative constant, because any multiple of an eigenvector is also an eigenvector. So, once
the eigenvector is found, we divide each element by the sum of all elements, so find the vector
that defines a valid probability distribution over 𝒮.

Method 2: matrix inverse

Proposition 2.8

Let (𝑋𝑛) be a Markov chain with transition probability matrix 𝑃 and with |𝒮| = 𝑁
states. The probability distribution 𝜋 is a stationary distribution of (𝑋𝑛) if and only if
𝜋(𝐼 − 𝑃 + 𝑈) = 1, where

• 𝐼 is a 𝑁 × 𝑁 identity matrix;
• 𝑈 is a 𝑁 × 𝑁 matrix of ones;
• 1 is a row vector of 𝑁 ones.

Proof

We first show that 𝜋𝑈 = 1:

𝜋𝑈 = (𝜋1 𝜋2 ⋯ 𝜋𝑁)
⎛⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟
⎠

= (∑𝑘 𝜋𝑘 ∑𝑘 𝜋𝑘 ⋯ ∑𝑘 𝜋𝑘)
= 1

where ∑𝑘 𝜋𝑘 = 1 because 𝜋 is a probability distribution.

We can then use this result to prove the proposition:

𝜋(𝐼 − 𝑃 + 𝑈) = 1
⇔ 𝜋𝐼 − 𝜋𝑃 + 𝜋𝑈 = 1
⇔ 𝜋 − 𝜋𝑃 + 1 = 1
⇔ 𝜋 − 𝜋𝑃 = 0
⇔ 𝜋 = 𝜋𝑃 ,

i.e., 𝜋 is a stationary distribution of (𝑋𝑛).

When the stationary distribution exists, then 𝐼 − 𝑃 + 𝑈 is invertible, and the stationary
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distribution can be calculated as

𝜋 = 1(𝐼 − 𝑃 + 𝑈)−1.

In practice, the matrix to invert is straightforward to compute, and there are many methods
to invert a matrix, so this is convenient to implement a general approach to find the stationary
distribution of a chain with finite state space.

Example 2.9

We illustrate the implementation of the two proposed methods to compute the stationary
distribution in R. This example uses a 3 by 3 transition probability matrix, but the code
would be virtually identical for a general 𝑁 by 𝑁 matrix.

# Transition probability matrix
P <- matrix(c(0.9, 0.05, 0.05,

0, 0.7, 0.3,
0.1, 0.1, 0.8),

nrow = 3, byrow = TRUE)

##################################
## Method 1: eigendecomposition ##
##################################
# Get eigenvectors and eigenvalues
eig <- eigen(t(P))
# Keep vector associated with eigenvalue 1
eig_vec <- eig$vectors[,which(abs(eig$values - 1) < 1e-15)]
# Normalise vector to get a valid probability distribution
eig_vec / sum(eig_vec)

[1] 0.4 0.2 0.4
################################
## Method 2: matrix inversion ##
################################
# Define identity matrix and matrix of 1s
I <- diag(3)
U <- matrix(1, 3, 3)
# "solve" computes the matrix inverse, and "colSums" sums over columns
colSums(solve(I - P + U))

[1] 0.4 0.2 0.4
The two methods return the same solution.
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2.5 Statistical Inference
So far, we have presented Markov chains as mathematical models, but we can also view them
as data analysis tools. Given an observed time series of states, we might want to estimate the
transition probabilities of the process, which can be used to determine its long-term proper-
ties.

2.5.1 Likelihood function

Let (𝑋𝑛) be a Markov chain with transition probability matrix 𝑃 . For an observed sequence
𝑥0, 𝑥1, … , 𝑥𝑛, the likelihood function for 𝑃 is given by the joint probability Pr(𝑋0 = 𝑥0, 𝑋1 =
𝑥1, … , 𝑋𝑛 = 𝑥𝑛). We can write

Pr(𝑋0 = 𝑥0, … , 𝑋𝑛 = 𝑥𝑛) = Pr(𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0)
× Pr(𝑋1 = 𝑥1, … , 𝑋𝑛−1 = 𝑥𝑛−1)

= Pr(𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1)
× Pr(𝑋0 = 𝑥0, … , 𝑋𝑛−1 = 𝑥𝑛−1)

where the first equality uses the definition of conditional probability, and the second equality
comes from the Markov property. Using the same reasoning, we also have

Pr(𝑋0 = 𝑥0, … , 𝑋𝑛−1 = 𝑥𝑛−1) = Pr(𝑋𝑛−1 = 𝑥𝑛−1 ∣ 𝑋𝑛−2 = 𝑥𝑛−2, … , 𝑋0 = 𝑥0)
× Pr(𝑋0 = 𝑥0, … , 𝑋𝑛−2 = 𝑥𝑛−2)

= Pr(𝑋𝑛−1 = 𝑥𝑛−1 ∣ 𝑋𝑛−2 = 𝑥𝑛−2)
× Pr(𝑋0 = 𝑥0, … , 𝑋𝑛−2 = 𝑥𝑛−2)

which we can combine with the previous equation to find

Pr(𝑋0 = 𝑥0, … , 𝑋𝑛 = 𝑥𝑛) = Pr(𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1)
× Pr(𝑋𝑛−1 = 𝑥𝑛−1 ∣ 𝑋𝑛−2 = 𝑥𝑛−2)
× Pr(𝑋0 = 𝑥0, … , 𝑋𝑛−2 = 𝑥𝑛−2)

We repeat this reasoning to find the joint probability as a product of transition probabilities

Pr(𝑋0 = 𝑥0, … , 𝑋𝑛 = 𝑥𝑛) = Pr(𝑋0 = 𝑥0)
𝑛

∏
𝑘=1

Pr(𝑋𝑘 = 𝑥𝑘 ∣ 𝑋𝑘−1 = 𝑥𝑘−1)

The first term, Pr(𝑋0 = 𝑥0), can either be treated as a parameter, or the first value can be
viewed as deterministic, so Pr(𝑋0 = 𝑥0) = 1. Here, we follow the latter approach, which does
not affect inference on the transition probabilities.

Finally, the likelihood function is the joint probability of the observed data, written as a function
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of the parameter 𝑃 :

𝐿(𝑃) =
𝑛

∏
𝑘=1

Pr(𝑋𝑘 = 𝑥𝑘 ∣ 𝑋𝑘−1 = 𝑥𝑘−1)

=
𝑛

∏
𝑘=1

𝑃𝑥𝑘−1,𝑥𝑘

It is convenient to notice that this product contains each transition probability 𝑃𝑖𝑗 as many
times as there are transitions from state 𝑖 to state 𝑗 in the observed sequence. For 𝑖, 𝑗 ∈ 𝒮, let
𝑛𝑖𝑗 be the number of transitions from 𝑖 to 𝑗. Then,

𝐿(𝑃) = ∏
𝑖∈𝒮

∏
𝑗∈𝒮

𝑃 𝑛𝑖𝑗
𝑖𝑗 .

We often compute the log-likelihood, rather than the likelihood itself, because it is often easier
to work with analytically and numerically (e.g., see “Parameter estimation” below). Taking
the log, we find

ℓ(𝑃 ) = log[𝐿(𝑃 )] = ∑
𝑖∈𝒮

∑
𝑗∈𝒮

𝑛𝑖𝑗 log(𝑃𝑖𝑗)

2.5.2 Parameter estimation

The maximum likelihood estimator (MLE) of the transition probabilities in a Markov chain
is obtained by counting the number of transitions between each pair of states in the observed
data, and normalizing these counts to obtain the estimated probabilities.

Proposition 2.9

Let 𝑛𝑖𝑗 be the number of transitions from state 𝑖 to state 𝑗 in the observed data, and
let 𝑛𝑖 = ∑𝑗 𝑛𝑖𝑗 be the total number of transitions from state 𝑖. Then the MLE of the
transition probability 𝑃𝑖𝑗 from state 𝑖 to state 𝑗 is given by

𝑃𝑖𝑗 = 𝑛𝑖𝑗
𝑛𝑖

To prove that this estimator is indeed the maximum likelihood estimator, we need to show that
it maximises the likelihood function of the observed data.

The MLE is obtained by maximizing 𝐿(𝑃) (or, equivalently, ℓ(𝑃 )) with respect to 𝑃 , subject
to the constraints that it is a stochastic matrix (i.e., entries are between 0 and 1, and rows sum
to 1). This can be done using the method of Lagrange multipliers, which is a general approach
to constrained optimisation problems. by noticing that each row of the transition probability
matrix can be estimated separately. Specifically, we need to maximize the Lagrangian function
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2 Discrete-time Markov processes

ℒ with respect to the transition probability of interest, where

ℒ(𝑃 , 𝜆) = ℓ(𝑃) − ∑
𝑚∈𝒮

{𝜆𝑚 (∑
𝑗∈𝒮

𝑃𝑚𝑗 − 1)}

Taking the derivative of ℒ with respect to 𝑃𝑖𝑗, we obtain

𝜕ℒ
𝜕𝑃𝑖𝑗

= 𝑛𝑖𝑗
𝑃𝑖𝑗

− 𝜆.

To find the maximum likelihood estimator 𝑃𝑖𝑗, we set the derivative to zero:

𝑛𝑖𝑗
𝑃𝑖𝑗

− 𝜆 = 0

⇒ 𝑃𝑖𝑗 = 𝑛𝑖𝑗
𝜆

We then use the row constraints on the transition probability matrix, and we find

𝑁
∑
𝑗=1

𝑃𝑖𝑗 = 1

⇒
𝑁

∑
𝑗=1

𝑛𝑖𝑗
𝜆 = 1

⇒ 𝜆 =
𝑁

∑
𝑗=1

𝑛𝑖𝑗

Finally, putting everything together,

𝑃𝑖𝑗 = 𝑛𝑖𝑗
∑𝑘∈𝒮 𝑛𝑖𝑘

= 𝑛𝑖𝑗
𝑛𝑖

In practice, given a sequence of observed states, we can then find the “best fitting” Markov
chain by calculating those transition probabilities from the numbers of transitions in the data.
Based on the estimates, we can then simulate from the process, or compute the stationary
distribution to better understand its long-term emerging features.

2.6 Markov chains with uncountable state space

We now briefly turn to the case where the state space is uncountable, e.g., 𝒮 = ℝ or 𝒮 = [0, 1].
Markov chains with uncountable state space have had great practical utility, as illustrated in
the later section on Markov chain Monte Carlo methods.
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2.6 Markov chains with uncountable state space

A stochastic process (𝑋𝑛) defined over an uncountable state space 𝒮 is called a Markov
process if

𝑓𝑋𝑛+1∣𝑋𝑛,…,𝑋0
(𝑥𝑛+1 ∣ 𝑥𝑛, … , 𝑥0) = 𝑓𝑋𝑛+1∣𝑋𝑛

(𝑥𝑛+1 ∣ 𝑥𝑛)

The idea is the same as for discrete state spaces: conditionally on the current state, future states
are independent of past states. The only difference is that, now, the state takes on continuous
rather than discrete values.

Example 2.10: Gaussian random walk

Consider the process (𝑋𝑛) defined by 𝑋0 = 0 and

𝑋𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛 ∼ 𝑁(𝑥𝑛, 1),

for 𝑛 = 1, 2, …. This process satisfies the Markov property, because the distribution of
𝑋𝑛+1 can be written in terms of only 𝑋𝑛. Five example realisations of this Gaussian
random walk are shown in Figure 2.13.
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Figure 2.13: Five simulated realisations of Gaussian random walk starting at 𝑋0 = 0.

In the uncountable case, the transition dynamics of the process cannot be written as a matrix
(not even an infinite matrix). Instead, we define the transition kernel of the process, 𝐾 ∶
𝒮 × 𝒮 → [0, ∞), as

𝐾(𝑥, 𝑦) = 𝑓𝑋𝑛+1∣𝑋𝑛
(𝑦 ∣ 𝑥), for 𝑥, 𝑦 ∈ 𝒮.

That is, 𝐾(𝑥, 𝑦) must be a probability density function with respect to 𝑦, such that
∫𝒮 𝐾(𝑥, 𝑦) 𝑑𝑦 = 1. This function gives the probability density of each transition over
continuous space. For example, in the Gaussian random walk described above, the transition
kernel was given by the probability density function of the normal distribution.
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2 Discrete-time Markov processes

Likewise, the initial distribution of the process must be written as a continuous probability
distribution, with density function 𝑓𝑋0

∶ 𝒮 → [0, ∞). The marginal distribution of the process
at subsequent time points can then be derived recursively as

𝑓𝑋𝑛+1
(𝑥𝑛+1) = ∫

𝒮
𝑓𝑋𝑛

(𝑥)𝐾(𝑥, 𝑥𝑛+1) 𝑑𝑥

We say that the distribution 𝜋 ∶ 𝒮 → [0, ∞) is a stationary distribution of the Markov process
(𝑋𝑛) with transition kernel 𝐾 if

∫
𝒮

𝜋(𝑥)𝐾(𝑥, 𝑦) 𝑑𝑥 = 𝜋(𝑦).

Because 𝜋 is a probability distribution over 𝒮, it is also subject to the constraint ∫𝒮 𝜋(𝑥) 𝑑𝑥 = 1.
The problem of deriving the stationary distribution of a Markov chain over an uncountable
state space is the foundation of Markov chain Monte Carlo, a powerful method to sample from
complex probability distributions (described in the Applications section below).

The different types of Markov chains that we studied in the countable case have to be refined
to the uncountable case, with the notions of 𝜙-irreducibility, Harris recurrence, and periodicity
over a partition of the state space, but we will not describe these here.

2.7 Applications

2.7.1 Markov chain Monte Carlo

Consider the problem of Bayesian inference. If we denote as 𝑍 the random vector of data,
and Θ the vector of parameters of interest, the focus of a Bayesian analysis is the posterior
distribution

𝑓Θ∣𝑍(𝜃 ∣ 𝑧) =
𝑓𝑍∣Θ(𝑧 ∣ 𝜃)𝑓Θ(𝜃)

𝑓𝑍(𝑧)
where 𝑓Θ∣𝑍 is called the posterior distribution, 𝑓𝑍∣Θ is the likelihood function, 𝑓Θ is the prior
distribution, and 𝑓𝑍 is the marginal distribution of the data. The likelihood function is de-
termined by the choice of model formulation, and the prior distribution is chosen by the user
based on prior knowledge about the parameters.

The marginal distribution in the denominator can be written as 𝑓𝑍(𝑧) = ∫ 𝑓𝑍∣Θ(𝑧 ∣ 𝜃)𝑓Θ(𝜃) 𝑑𝜃,
and it is not generally tractable except for simple model formulations. Because this term
does not depend on the parameter 𝜃, we can in principle evaluate the numerator over some
grid of values of 𝜃 (plugging in the observed data for 𝑧), and approximate the constant on the
denominator by summing them. However, this approach is not computationally feasible in cases
where Θ is high-dimensional, which is very common in practice; many interesting statistical
models have tens or hundreds of parameters to estimate.
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2.7 Applications

An alternative approach to this problem is to generate samples from the posterior distribution
𝑓Θ∣𝑍, rather than try to evaluate it directly. It turns out that a random sample from the
distribution is all we need to approximate relevant summaries of the posterior distribution,
e.g., the mean of the distribution (often used as point estimate), or its quantiles (often used to
define interval estimates). Generating a random sample from a distribution is also a difficult
task in general, though. Basic methods developed for this purpose include inverse transform
sampling and rejection sampling, for example. These only work well in simple cases, e.g., when
the cumulative distribution function can be evaluated, or for low-dimensional distributions.

Markov chain Monte Carlo (MCMC) is a general method which performs well in a wide range
of situations, including for high-dimensional problems. The idea behind Markov chain Monte
Carlo is to define a Markov chain over the parameter space, for which the stationary distribution
is known to be the posterior distribution, i.e., 𝜋(𝜃) = 𝑓Θ∣𝑍(𝜃 ∣ 𝑧). Under some technical
conditions analogous to those we described in the countable case in Section 2.4, the Markov
chain is known to converge to the stationary distribution regardless of the starting point. A
sample from the posterior distribution can then be obtained by simulating from the process
(i.e., repeatedly sampling from its transition kernel).

2.7.2 Google

The PageRank algorithm is a method for ranking web pages based on their importance and
relevance to a particular search query, which was originally used by Google. Although the
original paper by Brin and Page (1998) did not make that connection, the algorithm uses a
Markov chain to model the behaviour of a hypothetical web surfer who randomly clicks on links
from one page to another.

The basic idea is to find the proportion of time spent on different web pages, assuming that the
surfer will randomly click on links until they reach a dead end (i.e., a page with no outgoing
links). To model this behavior as a Markov chain, we can represent each web page as a state in
the chain, and the links between pages determine its transition probabilities. Then, assuming
that the resulting process is irreductible, its stationary distribution can be computed to find
the long-term proportion of time spent on each page.

This approach is superior to simply counting how many pages link to a given website, because
this would be ignoring the fact that those pages don’t all have the same weight. A link from a
very popular page matters more, and this is captured by this random-surfer model.

As an example, we consider the web pages corresponding to the transition graph shown in
Figure 2.14. Each node is a web page, and each arrow is a link. Note that there are two
absorbing states, E and F, which means that the process is not irreducible. To solve this
problem, the common solution is to assume that the surfer randomly opens a new page (from
all existing pages) when they run out of links to click. (This means that we will work with the
chain that has outgoing links from E and F to every other page.)
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2 Discrete-time Markov processes

Figure 2.14: Example transition graph for six webpages, where the arrows are links.
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2.7 Applications

The first step is to compute the transition probability matrix. The transition probability
from 𝑖 to 𝑗 is zero if there is no link, and it is one over the number of outgoing links from 𝑖
otherwise. Here, we start by defining an adjacency matrix, and then normalise the rows to get
transition probabilities. Finally, we compute the stationary distribution using a result from
Section 2.4.4.

# Define the adjacency matrix
N <- 6
A <- matrix(c(0, 1, 1, 0, 0, 1,

1, 0, 0, 1, 0, 0,
1, 0, 0, 0, 1, 1,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0),

nrow = N, ncol = N, byrow = TRUE,
dimnames = list(LETTERS[1:N], LETTERS[1:N]))

# Remove sinks
A[which(rowSums(A) == 0),] <- 1

# Compute the transition probability matrix
P <- A / rowSums(A)
round(P, 3)

A B C D E F
A 0.000 0.333 0.333 0.000 0.000 0.333
B 0.500 0.000 0.000 0.500 0.000 0.000
C 0.333 0.000 0.000 0.000 0.333 0.333
D 0.000 0.333 0.333 0.000 0.000 0.333
E 0.167 0.167 0.167 0.167 0.167 0.167
F 0.167 0.167 0.167 0.167 0.167 0.167

# Compute the PageRank scores
v <- colSums(solve(diag(N) - P + matrix(1, N, N)))
round(v, 3)

A B C D E F
0.194 0.167 0.167 0.139 0.111 0.222

A person randomly clicking on the links on these six pages will therefore spend roughly 19% of
their time on page A, 17% on page B, and so on. These proportions can be used as weights to
rank the pages in terms of their overall importance.
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2 Discrete-time Markov processes

2.7.3 𝑁-gram models (predictive text)

An 𝑁 -gram is a sequence of 𝑁 consecutive words, and they can be used as states of a Markov
chain to predict text input. Using a large corpus of text, we can count how many times each
possible sequence of 𝑁 words is followed by any other possible sequence of 𝑁 words. (As you
can imagine, this corresponds to a Markov chain with many states, especially for large 𝑁 .)
These give us transition probabilities of a Markov chain, and simulating from it produces new
text. For small 𝑁 , the result might be quite crude, but we can obtain more realistic text as 𝑁
increases. Your phone could use this procedure to suggest the next word when you are typing
a text, for example.

Here are some examples of text generated from a 2-gram, 3-gram, and 4-gram model, where
the corpus used for estimation was the Wikipedia page about Canada. The initial state of
the chain was set to “Canada” in the 2-gram model, “Canada is” in the 3-gram model, and
“Canada is a” in the 4-gram model.

2-gram examples:

• Canada (later Quebec) and French explorer Samuel de Champlain arrived at least 14,000
years prior to governance emphasizing multiculturalism, which considered by 1855. The
country in Quebec, cultural identity and trading networks. Canada for families receiving
social service programs. In addition to refer not without conflict, European Canadians’
early interactions with the northeast, on the 55th parallel in the assimilation of 1791
divided the top 100 km2 (3,855,100 sq mi) of the national healthcare systems in interna-
tional affairs, with France’s overseas collectivity of adults having at Tadoussac along the
commissioner of deaths in the OECD…

• Canada is 81.1 years. Beginning in the world, after the Canadas into French-speaking
population declined by the Indigenous cultures had a variety of adults self-report having
attained at the largest area subject to ensure reasonably uniform standards of past colonial
injustices and the provincial and post-secondary. Education in the top 100 km2 (3,855,100
sq mi) of Commons and a lack of Canada’s GDP for all federal government to have the
United States in Canada for quality of the world’s northernmost settlement, Canadian
horse, the border westward along the oldest post-secondary institution in international
trade networks…

3-gram examples:

• Canada is generally divided into primary education, followed by secondary education and
post-secondary. Education in Canada was formed as a middle power for its role in
assisting European coureur des bois and voyageurs in their explorations of the Truth and
Reconciliation Commission of Canada in 2008. This includes recognition of past colonial
injustices and settlement agreements and betterment of racial discrimination issues, such
as the 1976 Summer Olympics, the 1988 Winter Olympics, and the relatively flat Canadian
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Prairies in the Canada Health Act of 1984 and is reflected in its folklore, literature, music,
art, and music…

• Canada is a French Canadian culture that is distinct from English Canadian culture.
Canada’s approach to governance emphasizing multiculturalism, which is applied by the
Parliament of the Canadian Rockies, the Coast Mountains, and the Mount Edziza vol-
canic complex. Canada is experiencing an increase in healthcare expenditures due to a
combination of the continent during the North American colonies through Confederation,
Canada was Norse explorer Leif Erikson. In approximately 1000 AD, the Norse built
a small short-lived encampment that was occupied sporadically for perhaps 20 years at
L’Anse aux Meadows on the $1 coin, the Arms of Canada…

4-gram examples:

• Canada is a federation composed of 10 federated states, called provinces, and three federal
territories. In turn, these may be grouped into four main regions: Western Canada, Cen-
tral Canada, Atlantic Canada, and Northern Canada (Eastern Canada refers to Central
Canada and Atlantic Canada together). Provinces and territories have responsibility for
social programs such as healthcare, education, and welfare, as well as administration of
justice (but not criminal law). Together, the provinces collect more revenue than the
federal government, a rarity among other federations in the world…

• Canada is a country in North America. Its ten provinces and three territories extend from
the Atlantic Ocean in the west, the country encompasses 9,984,670 km2 (3,855,100 sq mi)
of territory. Canada also has vast maritime terrain, with the world’s longest coastline of
243,042 kilometres (151,019 mi). In addition to sharing the world’s largest area of fresh
water lakes. Stretching from the Atlantic Ocean to the north, and to the Pacific Ocean
and northward into the Arctic Ocean, making it the world’s second-largest country by total
area, with the world’s longest coastline of 243,042 kilometres (151,019 mi)…
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3 Poisson processes

We now turn to a different type of stochastic process, called a counting process. A counting
process is useful to model the number or timing of events of interest, e.g., births in a hospital,
goals scored by a hockey team, or earthquakes in a region.

Definition 3.1

A stochastic process (𝑁𝑡)𝑡≥0 is called a counting process if:
1. for any 𝑡 ≥ 0, 𝑁𝑡 ≥ 0;
2. for any 𝑡 ≥ 0, 𝑁𝑡 is integer-valued;
3. for any 0 ≤ 𝑠 ≤ 𝑡, 𝑁𝑠 ≤ 𝑁𝑡.

We interpret 𝑁𝑡 as the total number of events that have occurred by time 𝑡.

Remarks:

• In the definition of a counting process, the time index 𝑡 is defined over a continuous rather
than discrete space. We can make that explicit by writing (𝑁𝑡)𝑡≥0, but sometimes we
omit it and simply denote the process as (𝑁𝑡). We use the letter 𝑡 to denote continuous
time, in contrast with 𝑛 for the discrete time index in the previous chapter.

• Here, we use the term “events” in the common sense, rather than in the technical sense
from probability theory.

Example: The graph in Figure 3.1 shows an example counting process.
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Figure 3.1: Example of counting process.
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3 Poisson processes

3.1 The Poisson process

3.1.1 Definition and terminology

Definition 3.2

We say that the stochastic process (𝑁𝑡) has independent increments if, for any 0 ≤
𝑞 < 𝑟 ≤ 𝑠 < 𝑡, the random variables 𝑁𝑟 − 𝑁𝑞 and 𝑁𝑡 − 𝑁𝑠 are independent.
We say that the stochastic process (𝑁𝑡) has stationary increments if, for any 𝑠, 𝑡 > 0,
the random variables 𝑁𝑡 and 𝑁𝑠+𝑡 − 𝑁𝑠 have the same distribution.

If the process (𝑁𝑡) has independent and stationary increments, the random variable 𝑁𝑡 − 𝑁𝑠
depends only on the length of the time interval 𝑡 − 𝑠, and not on the specific values of 𝑠 and
𝑡.

Definition 3.3

A counting process (𝑁𝑡)𝑡≥0 is called a Poisson process with rate 𝜆 > 0 if:
1. 𝑁0 = 0, i.e., no events have occurred yet at time 0;
2. (𝑁𝑡) has independent and stationary increments;
3. 𝑁𝑡 ∼ Poisson(𝜆𝑡) for any 𝑡 > 0, i.e.,

Pr(𝑁𝑡 = 𝑛) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛! , for 𝑛 ∈ ℕ.

There are at least three alternative definitions of the Poisson process, and we will discuss
another one a little later.

From the definition of a Poisson process, we can see that the number of events over any interval
of length 𝑡 follows a Poisson distribution with rate 𝜆𝑡. Indeed, because the increments of the
process are stationary, 𝑁𝑡 and 𝑁𝑠+𝑡 − 𝑁𝑠 have the same distribution for any 𝑠, 𝑡 > 0, i.e.,

Pr(𝑁𝑠+𝑡 − 𝑁𝑠 = 𝑛) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛! , for 𝑛 ∈ ℕ.

As a reminder, Figure 3.2 shows the probability mass function of the Poisson distribution for
five different values of the rate parameter 𝜆.

The rate parameter 𝜆 of the process controls how often events happen: larger values of 𝜆
correspond to more frequent events. Remember that both the mean and variance of the Poisson
distribution are equal to the rate parameter, so we know that, on average, 𝜆𝑡 events will take
place in an interval of length 𝑡. In other words, the number of events is proportional to the
rate parameter (𝜆) and to the length of the interval (𝑡). It is intuitive that, on average, more
events should take place over a longer interval; for a Poisson process, we expect twice as many
events over an interval twice as long, and so on. The interpretation of 𝜆 is the average number
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Figure 3.2: Probability mass function of Poisson distribution for different values of the rate parameter
𝜆.

of events over an interval of length 1.

Example 3.1

Assume that the number of customers who arrive at Superstore follows a Poisson process
with an average rate of 𝜆 = 2 customers per minute.

1. What is the probability that exactly 10 customers arrive in the next 3 minutes?
Let 𝑋1 be the number of customers that arrive in the next 3 minutes. By definition
of the Poisson process, 𝑋1 follows a Poisson distribution with rate 3𝜆 = 6. Then,
we have

Pr(𝑋1 = 10) = 𝑒−6 610
10! = 0.041

2. What is the probability that at least 2 customers arrive in the next 30 seconds?
The number of customers in the next 30 seconds, 𝑋2, follows a Poisson distribution
with rate 0.5𝜆 = 1, and so

Pr(𝑋2 ≥ 2) = 1 − Pr(𝑋2 < 2)
= 1 − Pr(𝑋2 = 0) − Pr(𝑋2 = 1)

= 1 − 𝑒−1 10

0! − 𝑒−1 11

1!
= 0.264

3. What is the probability that the next customer will arrive within 15 seconds?
This is equivalent to the probability the number of customers arriving in the next 15
seconds, 𝑋3, is at least one. We know that 𝑋3 follows a Poisson distribution with
rate 0.25𝜆 = 0.5, so

Pr(𝑋3 ≥ 1) = 1 − Pr(𝑋2 = 0)

= 1 − 𝑒−0.5 0.50

0!
= 0.393

4. What is the probability that exactly 3 customers arrive in the first minute and
exactly 10 customers arrive in the first three minutes?
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Let 𝑋4 and 𝑋5 be the numbers of customers arriving in the first minute and in the
first two minutes, respectively. These two random variables are not independent,
but we can rephrase the question in terms of 𝑋4 and 𝑋6 = 𝑋5 − 𝑋4 (the number
of customers arriving in the second and third minutes), which are independent. We
want the probability that 𝑋4 = 3 and 𝑋6 = 7, and we know that 𝑋4 ∼ Poisson(2)
and 𝑋6 ∼ Poisson(4), so

Pr(𝑋4 = 3, 𝑋6 = 7) = Pr(𝑋4 = 3) × Pr(𝑋6 = 7)

= 𝑒−2 23

3! × 𝑒−4 47

7!
= 0.011

In many contexts, the variable of interest is not the number of events 𝑁𝑡, but the times at which
events occur, and the lengths of time intervals between events (e.g., expected time between
two high-magnitude earthquakes in a region). For example, we might be interested in the
times between events, denoted as 𝑇1, 𝑇2, … in Figure 3.3, or in the times of events, denoted
as 𝑆1, 𝑆2, … in Figure 3.3. These random variables are called “interarrival times” and “arrival
times”, respectively.
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Figure 3.3: Illustration of interarrival times 𝑇1, 𝑇2, … and arrival times 𝑆1, 𝑆2, … of a Poisson process.

Definition 3.4

The interarrival times of a Poisson process are the random variables measuring the
lengths of time intervals between successive events. We denote as 𝑇𝑛 the inter-arrival time
between the (𝑛 − 1)th and the 𝑛th events (where 𝑇1 is the time of the first event).

Definition 3.5

The arrival times of a Poisson process are the times at which events occur. We denote
as 𝑆𝑛 the arrival time for the 𝑛th event, i.e., 𝑆𝑛 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛.

The terminology of “arrivals” comes from queueing theory, where the focus is on modelling the
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3.2 Distribution of interarrival times

arrivals and departures of customers from a queue. The interarrival times are also sometimes
called “waiting times”, and the arrival times are sometimes called “event times”.

3.1.2 Infinitesimal definition

An alternative definition of the Poisson process describes the distribution of points over in-
finitesimal time intervals. It requires the little-o notation, and we first define this. We write
𝑓(ℎ) = 𝑜(ℎ) (read as “little-o of ℎ”), if

lim
ℎ→∞

𝑓(ℎ)
ℎ = 0.

That is, we use 𝑜(ℎ) to denote any terms that are small relative to ℎ, in the technical sense
described above.

Definition 3.6 (alternative definition of Poisson process)

The counting process (𝑁𝑡)𝑡≥0 is a Poisson process with rate 𝜆 > 0 if
1. 𝑁0 = 0;
2. 𝑁(𝑡) has independent increments;
3. Pr(𝑁𝑡+ℎ − 𝑁𝑡 = 1) = 𝜆ℎ + 𝑜(ℎ);
4. Pr(𝑁𝑡+ℎ − 𝑁𝑡 > 1) = 𝑜(ℎ).

We will not prove the equivalence of the two definitions, but it turns out that these conditions
imply that the count of events over a time interval follows a Poisson distribution.

Some books present all continuous-time stochastic processes using the little-o notation, so it is
good to understand the intuition behind it. Essentially, condition 4 ensures that there cannot be
more than one event in a very short time interval (or at least, the probability of that happening
is negligible). Condition 3 states that the probability of an event occuring over a short time
interval is approximately proportional to the rate parameter of the process, 𝜆.

3.2 Distribution of interarrival times

Proposition 3.1

Consider a Poisson process (𝑁𝑡) with rate parameter 𝜆 > 0. The interarrival times of
(𝑁𝑡) (𝑇1, 𝑇2, …) are independent exponentially distributed random variables with rate
parameter 𝜆. That is, they have the probability distribution function 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, for
𝑡 ≥ 0
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Proof

We first prove the result for 𝑇1, the time of the first event. We have Pr(𝑇1 > 𝑡) =
Pr(𝑁𝑡 = 0) = 𝑒−𝜆𝑡. We recognise the cumulative distribution function of the exponential
distribution, so 𝑇1 ∼ Exp(𝜆).
Then, we turn to 𝑇𝑛, the interarrival time between the (𝑛 − 1)th and the 𝑛th events, for
𝑛 ≥ 2:

Pr(𝑇𝑛 > 𝑡) = ∫
∞

0
Pr(𝑇𝑛 > 𝑡 ∣ 𝑆𝑛 = 𝑠)𝑓𝑆𝑛

(𝑠) 𝑑𝑠 (a)

= ∫
∞

0
Pr(𝑁𝑠+𝑡 − 𝑁𝑠 = 0 ∣ 𝑁𝑠 = 𝑛)𝑓𝑆𝑛

(𝑠) 𝑑𝑠 (b)

= ∫
∞

0
Pr(𝑁𝑡 = 0)𝑓𝑆𝑛

(𝑠) 𝑑𝑠 (c)

= 𝑒−𝜆𝑡 ∫
∞

0
𝑓𝑆𝑛

(𝑠) 𝑑𝑠 (d)

= 𝑒−𝜆𝑡, (e)

showing that 𝑇𝑛 follows an exponential distribution with rate 𝜆. In the derivation above,
(a) is the continuous version of the law of total probability, (b) translates a statement
about interarrival times (𝑇𝑛) to be in terms of counts (𝑁𝑡), (c) uses the stationarity and
independence of increments in a Poisson process, (d) substitutes the probability mass
function of the Poisson distribution, and (e) follows from the fact that probability density
functions integrate to 1 (including 𝑓𝑆𝑛

).

The exponential distribution has a mode of zero, and a mean of 1/𝜆. This is consistent with
our intuition of the Poisson process: the higher the rate, the shorter the interarrival times. The
exponential distribution is illustrated in Figure 3.4.

λ = 2 λ = 4 λ = 6 λ = 8 λ = 10

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0
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10

t

f(
t)

Exponential distribution

Figure 3.4: Probability density function of exponential distribution for different values of the rate
parameter 𝜆.

3.2.1 Memorylessness

The above result on the distribution of interarrival times is important because the exponential
distribution is the only continuous distribution with the memorylessness property.
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Definition 3.7

A random variable 𝑋 is memoryless if, for all 𝑠, 𝑡 > 0,

Pr(𝑋 > 𝑡 + 𝑠 ∣ 𝑋 > 𝑡) = Pr(𝑋 > 𝑠).

Because the interarrival times (𝑇1, 𝑇2, …) of a Poisson process follow an exponential distribution,
they have the memoryless property, and so we have

Pr(𝑇𝑛 > 𝑡 + 𝑠 ∣ 𝑇𝑛 > 𝑡) = Pr(𝑇𝑛 > 𝑠),

for all 𝑠, 𝑡 > 0. In words, this means that, regardless of how long we have been waiting since
the last event (which occurred at time 𝑡), the distribution of the time we still need to wait until
the next event is the same as the distribution of the original waiting time.

Example 3.2

1. Assume that a bakery has on average 6 customers per hour, and that the interarrival
times between customers follow an exponential distribution (with rate parameter
𝜆 = 6). The mean interarrival time is 1/6 hour = 10 minutes. Let’s say that the
last customer came 30 minutes ago. This is an unusually long waiting time, so we
might expect that the next customer is likely to arrive in the next few minutes, but
this would be incorrect. In fact, regardless of the 30-minute wait, the distribution of
the waiting time until the next customer arrives is still an exponential distribution
with mean 10 minutes. This is because different customers arrive at the bakery inde-
pendently, and the arrival of the next customer does not depend on the last customer.

2. A physical example of memorylessness is radioactive decay. Carbon-14 atoms decay
into Nitrogen-14 over time, which takes 8267 years on average (this is called the
“mean-life” of Carbon-14). For a given atom, time until decay follows an exponential
distribution with rate parameter 𝜆 = 1/8267. The probability that the atom decays
in the next year does not depend on its age.

3.2.2 Simulating from a Poisson process

The exponential distribution of interarrival times give us a convenient way to simulate from a
Poisson process, based on the following algorithm. We initialise 𝑆0 = 0 and, for 𝑛 = 1, 2, …,

1. generate an interarrival time 𝑇𝑛 from the exponential distribution;

2. compute the arrival time 𝑆𝑛 = 𝑆𝑛−1 + 𝑇𝑛;

3. let 𝑁𝑡 = 𝑛 − 1 for 𝑆𝑛−1 ≤ 𝑡 < 𝑆𝑛.
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In practice, we simulate the interarrival and the arrival times (e.g., using rexp() in R), and
store those. Then, for a given time 𝑡, we find the corresponding value of the Poisson process
(𝑛) by looking for the two successive arrival times 𝑆𝑛 and 𝑆𝑛+1 such that 𝑆𝑛 ≤ 𝑡 < 𝑆𝑛+1.
Figure 3.5 shows four example realisations of a Poisson process with rate parameter 𝜆 = 0.8
over 0 ≤ 𝑡 ≤ 10, simulated using this algorithm.
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Figure 3.5: Four realisations of a Poisson process with rate 𝜆 = 0.8.

The following R chunk shows some example code that could be used to simulate from that
Poisson process, and to find the count 𝑁𝑡 based on the sequence of simulated arrival times.
This code could easily be modified to change the rate, the time window, or the number of
realisations.

# Set random seed for reproducibility
set.seed(652)

# Set a few parameters
tmax <- 10
rate <- 0.8

# Loop until reaching tmax
times <- 0
while(times[length(times)] < tmax) {

interarrival_time <- rexp(n = 1, rate = rate)
arrival_time <- times[length(times)] + interarrival_time
times <- c(times, arrival_time)

}
times

[1] 0.000000 2.518512 2.917831 3.395475 3.457126 3.612453 4.286739
[8] 6.602555 8.107993 8.785203 8.862875 10.029713
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# Get event count in [0, 5] from arrival times
count <- length(which(times < 5))
count

[1] 7

3.3 Distribution of arrival times

There are two different results about the distribution of arrival times in a Poisson process: the
distribution of one arrival time 𝑆𝑛, and the joint distribution of all arrival times conditional on
the number of events.

3.3.1 Marginal distribution of 𝑆𝑛

We first present a basic result about the distribution of the sum of independent random variables,
which uses an operation called the convolution of two functions.

Proposition 1.2

Let 𝑋 and 𝑌 be two independent continuous random variables, and 𝑍 = 𝑋 + 𝑌 . The
probability density function of 𝑍 is

𝑓(𝑍 = 𝑧) = ∫
∞

−∞
𝑓(𝑋 = 𝑧 − 𝑦)𝑓(𝑌 = 𝑦) 𝑑𝑦.

The intuition behind this formula is that we consider every possible combination of values for
𝑋 and 𝑌 that would yield 𝑍 = 𝑧. Because 𝑍 is defined as the sum of 𝑋 and 𝑌 , we know that,
if 𝑍 = 𝑧 and 𝑌 = 𝑦, then we must have 𝑋 = 𝑧 −𝑦. So, to go through all possible combinations,
we integrate (“sum”) over all possible values for 𝑌 , and this also determines the value of 𝑋.
This is illustrated visually in Grant Sanderson’s Youtube video “Convolutions | Why X+Y in
probability is a beautiful mess”. A similar result applies in the case of two discrete random
variables, with a sum instead of an integral.

Proposition 3.3

Consider a Poisson process with parameter 𝜆, and let 𝑆𝑛 be the 𝑛th arrival time for that
process. Then, 𝑆𝑛 ∼ gamma(𝑛, 𝜆), where 𝑛 is called the shape parameter, and 𝜆 the rate
parameter of the gamma distribution. That is, the probability density function of 𝑆𝑛 is

𝑓𝑆𝑛
(𝑡) = 𝜆𝑛𝑡𝑛−1

(𝑛 − 1)!𝑒
−𝜆𝑡, for 𝑡 > 0.
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Proof

By definition, 𝑆𝑛 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛 is the sum of 𝑛 independent random variables
that all follow an exponential distribution with rate parameter 𝜆. We can use a proof
by induction to show that a random variable defined by this sum follows a gamma
distribution with shape 𝑛 and rate 𝜆.

1. Base case: Show that this holds for 𝑛 = 1.
We have 𝑆1 = 𝑇1, and we know that 𝑇1 ∼ 𝐸𝑥𝑝(𝜆), so

𝑓𝑆1
(𝑠) = 𝑓𝑇1

(𝑠) = 𝜆𝑒−𝜆𝑠,

and this can be under the form of a gamma density function as

𝑓𝑆1
(𝑠) = 𝜆𝑛𝑒−𝜆𝑠𝑠𝑛−1

(𝑛 − 1)! , where 𝑛 = 1.

That is, 𝑆1 ∼ gamma(1, 𝜆), so the hypothesis stands for 𝑛 = 1.

2. Induction step: Show that, if 𝑆𝑛−1 ∼ gamma(𝑛 − 1, 𝜆), then 𝑆𝑛 = 𝑆𝑛−1 + 𝑇𝑛 ∼
gamma(𝑛, 𝜆).
By assumption, we have

𝑓𝑆𝑛−1
(𝑠) = 𝜆𝑛−1𝑒𝜆𝑠𝑠𝑛−2

(𝑛 − 2)! , and 𝑓𝑇𝑛
(𝑡) = 𝜆𝑒−𝜆𝑡.

If we define 𝑆𝑛 = 𝑆𝑛−1 + 𝑇𝑛, we can derive its density function by convolution,

𝑓𝑆𝑛
(𝑠) = ∫

𝑠

0
𝑓𝑆𝑛−1

(𝑧)𝑓𝑇𝑛
(𝑠 − 𝑧)𝑑𝑧

= ∫
𝑠

0

𝜆𝑛−1𝑒−𝜆𝑧𝑧𝑛−2

(𝑛 − 2)! 𝜆𝑒−𝜆(𝑠−𝑧)𝑑𝑧

= 𝜆𝑛𝑒−𝜆𝑠

(𝑛 − 2)! ∫
𝑠

0
𝑧𝑛−2𝑑𝑧

= 𝜆𝑛𝑒−𝜆𝑠

(𝑛 − 2)! [ 𝑧𝑛−1

𝑛 − 1]
𝑠

0

= 𝜆𝑛𝑒−𝜆𝑠

(𝑛 − 2)! ( 𝑠𝑛−1

𝑛 − 1 − 0)

= 𝜆𝑛𝑒−𝜆𝑠𝑠𝑛−1

(𝑛 − 1)!

which is the density function of a gamma distribution with shape 𝑛 and rate 𝜆, as
required.
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The mean and variance of the gamma distribution can be conveniently expressed in terms of
the shape and rate parameters, so we also have that

𝐸[𝑆𝑛] = 𝑛
𝜆 and 𝑉 𝑎𝑟[𝑆𝑛] = 𝑛

𝜆2 .

That is, the expected value for the time 𝑛th event is proportional to 𝑛 and inversely proportional
to 𝜆.

Figure 3.6 shows the probability density function of the gamma distribution for several combi-
nations of the shape 𝑛 and rate 𝜆.
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Figure 3.6: Probability density function of gamma distribution for different parameter values.

In this context, the shape parameter must be a positive integer (𝑛 ∈ ℝ>0); when this is the
case, the gamma distribution is sometimes called the Erlang distribution. Note that, generally,
the shape of the gamma distribution can be any positive real number, and the (𝑛 − 1)! in the
denominator of the probability density function is replaced by the Gamma function Γ(𝑛) (which
generalises the factorial to non-integers), but this is not needed in the present context.

3.3.2 Conditional joint distribution of 𝑆1, … , 𝑆𝑛

We then turn to the joint distribution of arrival times over (0, 𝑡) conditional on the number of
events 𝑛 in that interval. We must first define the concept of order statistic. If 𝑋1, 𝑋2, … , 𝑋𝑛
are 𝑛 random variables, we call 𝑋(1), 𝑋(2), … , 𝑋(𝑛) the corresponding order statistics if 𝑋(𝑘) is
the 𝑘th smallest value among the {𝑋𝑘}. That is, the order statistics are the random variables
in increasing order. If the {𝑋𝑘} are independent and identically distributed random variables
with probability density function 𝑓𝑋, then the joint density of the order statistics {𝑋(𝑘)} is

𝑓𝑋(1),…,𝑋(𝑛)
(𝑥1, … , 𝑥𝑛) = 𝑛!

𝑛
∏
𝑖=1

𝑓𝑋(𝑥𝑖), where 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛.
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In particular, if the {𝑋𝑘} are independent and uniformly distributed over the interval (0, 𝑡),
the joint density of the corresponding order statistics is

𝑓𝑋(1),…,𝑋(𝑛)
(𝑥1, … , 𝑥𝑛) = 𝑛!

𝑡𝑛 , where 0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < 𝑡.

The reason that the 𝑛! factor appears is that there are 𝑛! combinations of the unordered variables
that give rise to a given ordered sequence 𝑥1, 𝑥2, … , 𝑥𝑛 (the 𝑛! permutations of 𝑥1, 𝑥2, … , 𝑥𝑛).
It might seem odd that the joint probability density function of 𝑛 uniform variables can be
multiplied by 𝑛! and still give rise to a valid probability density function. This is because,
when the variables are ordered, this decreases the domain of the distribution (over which the
density is non-zero) by a factor 𝑛!. This is illustrated in two dimensions in Figure 3.7, where
the domain of the distribution is divided by two, and in three dimensions in the interactive
plot below (which will unfortunately only show in the html version of the notes, not the PDF
file).
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X(1)

X
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)
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Figure 3.7: Simulation of order statistics corresponding to two independent uniform variables.
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We can use the concept of order statistic to desribe the joint conditional distribution of the
arrival times of a Poisson process.

Proposition 3.4

Consider a Poisson process (𝑁𝑡), and let 𝑆𝑛 be the 𝑛th arrival time for that process. Given
that 𝑁𝑡 = 𝑛, the 𝑛 arrival times 𝑆1, 𝑆2, … , 𝑆𝑛 are distributed as the order statistics of a
uniform distribution on (0, 𝑡).

Proof

The proof requires the derivation of the joint probability density of {𝑆1, … , 𝑆𝑛, 𝑁𝑡}, which
we can rewrite in terms of the distributions of interarrival times 𝑇1, … , 𝑇𝑛. If the arrival
times are 𝑆1 = 𝑠1, … , 𝑆𝑛 = 𝑠𝑛 and the number of events is 𝑁𝑡 = 𝑛, then we know that
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the 𝑛 first interarrival times are 𝑇1 = 𝑠1, 𝑇2 = 𝑠2 − 𝑠1, … , 𝑇𝑛 = 𝑠𝑛 − 𝑠𝑛−1, and that the
(𝑛 + 1)th interarrival time must satisfy 𝑇𝑛+1 > 𝑡 − 𝑠𝑛.
Then, we have

𝑓𝑆1,…,𝑆𝑛∣𝑁𝑡
(𝑠1, … , 𝑠𝑛 ∣ 𝑁𝑡 = 𝑛) =

𝑓𝑆1,…,𝑆𝑛,𝑁𝑡
(𝑠1, … , 𝑠𝑛, 𝑛)

Pr(𝑁𝑡 = 𝑛) (a)

=
𝑓𝑇1

(𝑠1)𝑓𝑇2
(𝑠2 − 𝑠1) … 𝑓𝑇𝑛

(𝑠𝑛 − 𝑠𝑛−1) Pr(𝑇𝑛+1 > 𝑡 − 𝑠𝑛)
Pr(𝑁𝑡 = 𝑛) , (b)

where (a) comes from the definition of conditional probability, and (b) translates the
statement in terms of interarrival times.

The 𝑓𝑇𝑖
are given by the probability density of the exponential distribution, Pr(𝑇𝑛+1 >

𝑡−𝑠𝑛) is obtained from the cumulative distribution function of the exponential distribution,
and Pr(𝑁𝑡 = 𝑛) is the probability mass function of a Poisson distribution. Making these
substitutions, we find

𝑓𝑆1,…,𝑆𝑛
(𝑠1, … , 𝑠𝑛 ∣ 𝑁𝑡 = 𝑛) = 𝜆𝑒−𝜆𝑠1𝜆𝑒−𝜆(𝑠2−𝑠1) … 𝜆𝑒−𝜆(𝑠𝑛−𝑠𝑛−1)𝑒−𝜆(𝑡−𝑠𝑛)

(𝜆𝑡)𝑛𝑒−𝜆𝑡/𝑛!
= 𝜆𝑛 exp(𝜆(𝑠1 − 𝑠1 + 𝑠2 − 𝑠2 + ⋯ + 𝑠𝑛 − 𝑠𝑛 − 𝑡))

𝜆𝑛𝑡𝑛 exp(−𝜆𝑡)/𝑛!

= 𝜆𝑛𝑒−𝜆𝑡

𝜆𝑛𝑒−𝜆𝑡𝑡𝑛/𝑛!
= 𝑛!

𝑡𝑛 ,

as required.

Another way to state the proposition above is that the arrival times, considered as unordered
random variables, are uniformly distributed conditionally on the number of events in (0, 𝑡).
Note that we cannot state that the distribution of event times is therefore uniform over [0, ∞),
because the uniform distribution is only well defined over finite intervals.

This result suggests an alternative method to simulate from a Poisson process:

1. set 𝑡, and simulate 𝑁𝑡 ∼ Poisson(𝜆𝑡);

2. simulate 𝑈1, 𝑈2, … , 𝑈𝑁𝑡
∼ Unif(0, 𝑡);

3. define the arrival times as 𝑆𝑖 = 𝑈(𝑖), where 𝑈(𝑖) is the 𝑖th smallest value in {𝑈1, … , 𝑈𝑛};

4. let 𝑁𝑠 = 𝑛 − 1 over 𝑆𝑛−1 ≤ 𝑠 < 𝑆𝑛.

69



3 Poisson processes

Example 3.3

Assume that the occurence of major earthquakes in Canada since January 1, 2000 can be
described by a Poisson process with rate 𝜆 = 1 per year.

1. Find the probability that the 20th major earthquake since January 1, 2000 occured
in 2022.

The arrival time of the 20th earthquake, 𝑆20, follows a gamma distribution with
shape 20 and with rate 1 (where January 1, 2000 is treated as 𝑡 = 0). We want the
probability

Pr(22 < 𝑆20 < 23) = Pr(𝑆20 < 23) − Pr(𝑆20 < 22)
= 0.762 − 0.694
= 0.068

using the cumulative distribution function of the gamma distribution (e.g., pgamma()
in R).

2. Given that 20 major earthquakes took place in Canada between January 1, 2000
and December 31, 2022, what is the probability that the 20th earthquake occured
in 2022?

We want the probability that the last earthquake took place in 2022, i.e., that
the maximum of 20 random variables from Unif(0, 22) is greater than 22. Let
𝑈1, 𝑈2, … , 𝑈20 be Unif(0, 22) random variables, and let 𝑀 be their maximum. We
can get the conditional probability as follows,

Pr(22 < 𝑆20 < 23 ∣ 𝑁23 = 20) = Pr(22 < 𝑀 < 23)
= 1 − Pr(𝑀 ≤ 22)
= 1 − Pr(𝑈1 ≤ 22, 𝑈2 ≤ 22, … , 𝑈20 ≤ 22)
= 1 − Pr(𝑈1 ≤ 22) Pr(𝑈2 ≤ 22) ⋯ Pr(𝑈20 ≤ 22)
= 1 − Pr(𝑈1 ≤ 22)20

= 1 − (22/23)20

= 1 − 0.411
= 0.589

Notably, the answers to questions 1 and 2 are different.
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3.4 Statistical inference

Given a sequence of event times (𝑆1, … , 𝑆𝑁), we want to estimate the rate parameter 𝜆 of the
Poisson process. The simplest way to do this is to use the distribution of interarrival times to
derive the likelihood, and optimise it with respect to 𝜆.

For 𝑛 = 1, … , 𝑁 , the interarrival times 𝑇𝑛 = 𝑆𝑛 − 𝑆𝑛−1 arise from an exponential distribution
with rate parameter 𝜆 (where we define 𝑆0 = 0). The likelihood function is therefore

𝐿(𝜆 ∣ 𝑆1, … , 𝑆𝑁) =
𝑁

∏
𝑛=1

𝜆𝑒−𝜆𝑇𝑛,

and the log-likelihood is

ℓ(𝜆 ∣ 𝑆1, … , 𝑆𝑁) =
𝑁

∑
𝑛=1

(log(𝜆) − 𝜆𝑇𝑛) = 𝑁 log(𝜆) − 𝜆
𝑁

∑
𝑛=1

𝑇𝑛.

To find the maximum likelihood estimator, we differentiate the log-likelihood with respect to 𝜆
and we set to zero:

𝜕ℓ
𝜕𝜆(�̂� ∣ 𝑆1, … , 𝑆𝑁) = 0 ⇒ 𝑁

�̂�
−

𝑁
∑
𝑛=1

𝑇𝑛 = 0

⇒ �̂� = 𝑁
∑𝑁

𝑛=1 𝑇𝑛

⇒ �̂� = 𝑁
𝑆𝑁

.

This result is intuitive: our best guess for the rate of the process (i.e., expected number of events
per unit time) is the number of observed events over the length of the period of observation.

Example 3.4

The Old Faithful is a geyser in the Yellowstone National Park, Wyoming, USA, which
erupts at very predictable intervals. The data set of eruption times and inter-eruption
intervals is a classic example used to illustrate time series and point process models. It is
automatically loaded in R as the faithful data object; it has one column for durations
or eruptions, and one column for inter-eruption waiting times (i.e., interarrival times).
Here, we are interested in the latter.

1. Assuming that the eruptions of the Old Faithful geyser can be described as a Poisson
process, what is maximum likelihood estimate of the eruption rate?

# Load data
data("faithful")
head(faithful)
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eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

# Compute MLE of rate
lambda <- nrow(faithful) / sum(faithful$waiting)
lambda

[1] 0.01410496
The estimated rate is �̂� = 0.014 eruptions per minutes. That is, the estimated mean
waiting time between eruptions is 1/0.014 = 70.9 min (which is just the average of
the waiting column of the data frame).

2. What is the probability that more than 30 eruptions take place on a given day?

The number of eruptions during a day follows a Poisson distribution with rate 𝜆(24×
60), i.e., the rate parameter multiplied by the number of minutes in a day. The
probability is

Pr(𝑁 > 30) = 1 − Pr(𝑁 ≤ 30)
= 1 − 0.984
= 0.016,

using the cumulative distribution function of the Poisson distribution.

3.5 Non-homogeneous Poisson process
In many applications, the rate of events is not constant through time. For example, hurricanes
on the East coast of North America are more common in the summer months, and arrivals of
customers at a restaurant are more frequent around lunch and dinner. This phenomenon can
be modelled with the non-homogeneous Poisson process, an extension of the Poisson process
where the rate depends on time. We call the time-varying rate 𝜆(𝑡) the intensity function of
the process.

Definition 3.8

A counting process (𝑁𝑡)𝑡≥0 is a non-homogeneous Poisson process with intensity
function 𝜆(𝑡) if

1. 𝑁0 = 0
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3.5 Non-homogeneous Poisson process

2. for all 𝑡 > 0, 𝑁𝑡 has a Poisson distribution with mean

𝐸[𝑁𝑡] = ∫
𝑡

0
𝜆(𝑠) 𝑑𝑠;

3. (𝑁𝑡) has independent increments.

The Poisson process is a special case where 𝜆(𝑡) = 𝜆 is constant through time. Note that the
non-homogeneous Poisson process does not generally have stationary increments, because the
distribution of an increment depends on 𝜆(𝑡). For this reason, it is also sometimes called the
non-stationary Poisson process.

Proposition 3.5

If (𝑁𝑡) is a non-homogeneous Poisson process with intensity function 𝜆(𝑡), then, for 0 <
𝑠 < 𝑡, we have

𝑁𝑡 − 𝑁𝑠 ∼ Poisson (∫
𝑡

𝑠
𝜆(𝑥) 𝑑𝑥) .

That is, the number of events that occur between 𝑠 and 𝑡 follows a Poisson distribution,
with rate the integral of the intensity function over that interval.

The intuition is that more events will take place over time intervals where the intensity function
is high. This is illustrated with an example in Figure 3.8.

| |||| || || || | || | || || ||| || | | || ||| || ||||| | || | || | ||| | |||| || || ||| || || | ||

t

λ(
t)

Figure 3.8: Example of intensity function 𝜆(𝑡) (black line), and simulated event times from the
corresponding non-homogeneous Poisson process (red vertical ticks).
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3.6 Merging and splitting Poisson processes

3.6.1 Merging Poisson processes

Proposition 3.6

Let (𝑁 (1)
𝑡 ), (𝑁 (2)

𝑡 ), … , (𝑁 (𝑚)
𝑡 ) be 𝑚 independent Poisson processes with rates 𝜆1, … , 𝜆𝑚,

respectively. The process (𝑁𝑡) defined by

𝑁𝑡 = 𝑁 (1)
𝑡 + 𝑁 (2)

𝑡 + ⋯ + 𝑁 (𝑚)
𝑡 , for all 𝑡 ≥ 0

is a Poisson process with rate 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑚.

We omit the proof here; it first requires showing that the sum of independent Poisson random
variables is also a Poisson random variable, and applying this to the number of events over a
time interval.

Figure 3.9 shows an example of a process constructed by merging two Poisson processes.

Nt

Nt
(2)

Nt
(1)

Merging Poisson processes

Figure 3.9: Event times for three Poisson processes, where (𝑁𝑡) is the process defined by 𝑁𝑡 =
𝑁 (1)

𝑡 + 𝑁 (2)
𝑡 .

Example 3.5

Consider a soccer game between teams A and B, and assume that goals scored by the
teams can be modelled with two Poisson process, with rates 𝜆𝐴 = 1.1 and 𝜆𝐵 = 1.4
(goals per hour), respectively.

1. What is the probability that no goals have been scored by the end of the game, i.e.,
after 90 minutes?

The total number of goals scored by both teams follows a Poisson process with rate
𝜆 = 1.1 + 1.4 = 2.5. In particular, the number of goals scored after 90 minutes (=
1.5 hour) follows a Poisson distribution with rate 1.5 × 2.5 = 3.75, so the required
probability is

Pr(𝑋 = 0) = 3.750 × 𝑒−3.75

0! = 𝑒−3.75 = 0.024,

74
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so there is a 2.4% probability that zero goals will be scored during the game.

2. What is the probability that team B wins?

Pr(𝑁𝐴(𝑇 ) < 𝑁𝐵(𝑇 )) =
∞

∑
𝑛=0

∞
∑
𝑘=1

Pr(𝑁𝐴(𝑇 ) = 𝑛, 𝑁𝐵(𝑇 ) = 𝑛 + 𝑘)

=
∞

∑
𝑛=0

∞
∑
𝑘=1

Pr(𝑁𝐴(𝑇 ) = 𝑛) Pr(𝑁𝐵(𝑇 ) = 𝑛 + 𝑘)

=
∞

∑
𝑛=0

∞
∑
𝑘=1

(𝜆𝐴𝑇 )𝑛

(𝑛)! 𝑒−𝜆𝐴𝑇 (𝜆𝐵𝑇 )𝑛+𝑘

(𝑛 + 𝑘)! 𝑒−𝜆𝐵𝑇

= 𝑒−(𝜆𝐴+𝜆𝐵)𝑇
∞

∑
𝑛=0

[(𝜆𝐴𝜆𝐵𝑇 2)𝑛

𝑛!
∞

∑
𝑘=1

(𝜆𝐵𝑇 )𝑘

(𝑛 + 𝑘)!] .

Substituting the values of 𝜆𝐴, 𝜆𝐵 and 𝑇 , this becomes

Pr(𝑁𝐴(1.5) < 𝑁𝐵(1.5)) = 𝑒−1.5×(1.1+1.4)
∞

∑
𝑛=0

[(1.1 × 1.4 × 1.52)𝑛

𝑛!
∞

∑
𝑘=1

(1.4 × 1.5)𝑘

(𝑛 + 𝑘)! ]

= 𝑒−3.75
∞

∑
𝑛=0

[3.465𝑛

𝑛!
∞

∑
𝑘=1

2.1𝑘

(𝑛 + 𝑘)!]

≈ 0.316.

You should think about how you would use R to compute an approximation of the
series above.

3.6.2 Splitting a Poisson process

Proposition 3.7

Let (𝑁𝑡) be a Poisson process with rate 𝜆. Assume that each event is marked as a “type
𝑘” event with probability 𝑝𝑘 for 𝑘 = 1, … , 𝐾, where 𝑝1 + ⋯ + 𝑝𝐾 = 1. Let 𝑁 (𝑘)

𝑡 be the
number of events of type 𝑘 in [0, 𝑡]. Then, the processes (𝑁 (1)

𝑡 ), … , (𝑁 (𝐾)
𝑡 ) are independent

Poisson processes with rates 𝜆𝑝1, … , 𝜆𝑝𝐾, respectively.

Each component process (𝑁 (𝑘)
𝑡 ) is called a thinned Poisson process, because it represents

a “thinned” sequence of events, where events are included and excluded with some probability.
Thinned Poisson processes are often used in contexts where the process of interest is only
observed partially, with some detection probability associated with each event.
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Example 3.6

We are interested in the frequency of Northern lights in Churchill, Manitoba. We set up
an instrument to record them, but it only works during the night and when the sky is
clear. Over the course of a year, it is on average dark enough for the detector to work
40% of the time, and the sky is clear around 60% of the time.

1. How can we model the sequence of recorded Northern lights with a Poisson process?

We assume that the number of Northern lights follows a Poisson process with rate 𝜆
(in events per year). Each event is either observed or not, with some probability, so
the recorded Northern lights follow a thinned Poisson process. The detection prob-
ability is 0.4 × 0.6 = 0.24, so the rate of the thinned process is 𝜆thin = 0.24𝜆. That
is, there is a 24% probability of detecting a given Northern light with the instrument.

2. The detector recorded 27 Northern lights last year. Estimate the rate of Northern
lights in Churchill.

The number of recorded events gives us an estimate of the rate of the thinned process,
�̂�thin = 27/1 = 27. We are interested in the rate of the non-thinned process, though,
and we can calculate the estimate as �̂� = �̂�thin/0.24 = 112.5. We estimate that the
rate of Northern lights in Churchill is 112.5 per year.
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4 Continuous-time Markov processes

We will now describe continuous-time Markov processes, which include Poisson processes as a
special case. We will continue using the letter 𝑡 to represent time as a continuous variable (as
opposed to the discrete index 𝑛 in Chapter 2).

4.1 Introduction

4.1.1 Definition

The discrete-time Markov property is written in terms of a sequence of random variables defined
over a regular time grid. It needs to be slightly modified in the continuous-time setting.

Definition 4.1

The process (𝑋𝑡)𝑡≥0 is a continuous-time Markov process with countable state space
𝒮 if, for all 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 and 𝑖, 𝑗 ∈ 𝒮,

Pr(𝑋𝑡 = 𝑗 ∣ 𝑋𝑠, 𝑋𝑟) = Pr(𝑋𝑡 = 𝑗 ∣ 𝑋𝑠).

This is the continuous-time version of the Markov property.

This is very similar to the definition of a discrete-time Markov chain. In the discrete-time case,
we said that the process at time 𝑛 + 1 was independent of its values at times {0, … , 𝑛 − 1}
conditionally on its last value, i.e., at time 𝑛. In continuous time, there is no canonical time
interval, so the property is instead defined for three arbitrary times 𝑟 ≤ 𝑠 ≤ 𝑡 on [0, ∞). Given
several past values of the process (𝑋𝑠 and 𝑋𝑟), only the most recent (𝑋𝑠) is informative to
write the distribution of the current value of the process (𝑋𝑡).

Continuous-time Markov processes can be defined over countable (discrete) or uncountable
(continuous) state spaces, and we will mostly focus on the countable case, where they are
sometimes called “Markov jump processes” (because the process jumps between discrete values).
We will talk about “jumps”, “switches”, and “transitions” interchangeably.

77



4 Continuous-time Markov processes

Definition 4.2

A continuous-time Markov chain (𝑋𝑡) is time-homogeneous if, for any 𝑠, 𝑡 ≥ 0,

Pr(𝑋𝑠+𝑡 = 𝑗 ∣ 𝑋𝑠 = 𝑖) = Pr(𝑋𝑡 = 𝑗 ∣ 𝑋0 = 𝑖), for 𝑖, 𝑗 ∈ 𝒮.

That is, the probability of a transition over some time interval does not depend on the
start time of the interval.

In this chapter, we will only consider time-homogeneous Markov chains, i.e., whose dynamics
are constant through time.

4.1.2 Holding times

Just like in the discrete-time case, thinking about the distribution of holding times (i.e., times
between state transitions) is useful to understand what realisations from a continuous-time
Markov process look like. Let 𝐷𝑖 be the holding time in state 𝑖, i.e., the amount of time the
process stays in state 𝑖 before switching to another state. Unlike in the discrete-time case, 𝐷𝑖
is a continuous variable here, defined over [0, ∞). It turns out that the Markov property fully
determines the distribution of holding times.

Proposition 4.1

The dwell time of a continuous-time Markov process follows an exponential distribution.

Proof

We first prove that that the dwell time is memoryless, i.e., Pr(𝐷𝑖 > 𝑠 + 𝑡 ∣ 𝐷𝑖 > 𝑠) =
Pr(𝐷𝑖 > 𝑡).

Pr(𝐷𝑖 > 𝑠 + 𝑡 ∣ 𝐷𝑖 > 𝑠) = Pr(𝑋𝑢 = 𝑖 for 𝑢 ∈ [0, 𝑠 + 𝑡] ∣ 𝑋𝑢 = 𝑖 for 𝑢 ∈ [0, 𝑠])
= Pr(𝑋𝑢 = 𝑖 for 𝑢 ∈ [𝑠, 𝑠 + 𝑡] ∣ 𝑋𝑢 = 𝑖 for 𝑢 ∈ [0, 𝑠])
= Pr(𝑋𝑢 = 𝑖 for 𝑢 ∈ [𝑠, 𝑠 + 𝑡] ∣ 𝑋𝑠 = 𝑖) (a)

= Pr(𝑋𝑢 = 𝑖 for 𝑢 ∈ [0, 𝑡] ∣ 𝑋0 = 𝑖) (b)

= Pr(𝐷𝑖 > 𝑡),

where (a) follows from the Markov property, and (b) follows from the time-homogeneity
of the chain.

The exponential distribution is the only memoryless probability distribution with contin-
uous support, and so the dwell time must be exponentially distributed. A proof of this
special feature of the exponential distribution is for example presented in Section 5.2.2 of
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Ross (2019).

This property does not tell us what the rate of the exponential distribution is, or how we
determine what state to jump to at the end of the holding time, so we don’t yet have enough
information to simulate from a continuous-time Markov chain. We will answer those questions
in the next section.

Figure 4.1 shows an example of a 2-state continuous-time Markov process with 𝒮 = {0, 1}. The
times between state transitions do not occur on a predefined grid like in the discrete-time case;
instead, they can occur at any continuous time.

0

1

0 25 50 75 100
t

X
t

Figure 4.1: Example realisation from a continuous-time Markov process with state space 𝒮 = {0, 1},
for 𝑡 ∈ [0, 100].

4.2 Model specification

4.2.1 Transition rates

Because time is now continuous, there is a no particular time grid of interest over which to define
transition probabilities. However, because we know that the holding times follow an exponential
distribution, the model can instead be specified in terms of two sets of parameters:

1. the rate parameter of the holding time distribution in each state 𝑖;
2. the probabilities of jumping from any state 𝑖 to any other state 𝑗 ≠ 𝑖.

With this in mind, a continuous-time Markov process can be described as follows. When the
process enters some state 𝑖, a waiting time is generated from an exponential distribution with
rate parameter 𝑞𝑖𝑗 > 0 for each other state 𝑗 ≠ 𝑖, say 𝐷𝑖𝑗. Then, the process jumps to the
state with the shortest waiting time (out of all the 𝑗 ≠ 𝑖). The holding time before a transition
is therefore 𝐷𝑖 = min{𝐷𝑖𝑗}𝑗≠𝑖, and it can be shown that it follows an exponential distribution
(as required by the Markov property), with rate 𝑞𝑖 = ∑𝑗≠𝑖 𝑞𝑖𝑗. By property of the exponential
distribution, the expected holding time in state 𝑖 is 1/𝑞𝑖.

Once we have generated a holding time 𝐷𝑖 ∼ Exp(𝑞𝑖), then, how do we know which state to
jump to after 𝐷𝑖? When it leaves state 𝑖, the process switches to the state with the minimum
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waiting time; for each state 𝑗 ≠ 𝑖, this occurs with probability

𝑃𝑖𝑗 = 𝑞𝑖𝑗
∑𝑘≠𝑖 𝑞𝑖𝑘

= 𝑞𝑖𝑗
𝑞𝑖

.

The discrete-time Markov chain with transition probabilities 𝑃𝑖𝑗 is called the embedded chain,
or sometimes the skeleton of the continuous-time process.

The dynamics of the process are therefore fully defined by the transition rates {𝑞𝑖𝑗}𝑖≠𝑗. A
Markov process with finite state space of size |𝒮| = 𝑁 has 𝑁 × (𝑁 − 1) such transition rates.
It is convenient to write the transition rates in the form of a matrix where, by convention, the
𝑖th diagonal entry is set to 𝑞𝑖𝑖 = −𝑞𝑖,

𝑄 =
⎛⎜⎜⎜⎜⎜⎜
⎝

−𝑞0 𝑞01 𝑞02 ⋯
𝑞10 −𝑞1 𝑞12 ⋯
𝑞20 𝑞21 −𝑞2 ⋯
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

such that the rows sum to zero: ∑𝑗 𝑞𝑖𝑗 = 0 for all 𝑖 ∈ 𝒮. 𝑄 is called the transition rate
matrix, or infinitesimal generator matrix of the process.

We can represent a continuous-time Markov chain as a directed weighted graph, where the edges
are weighted by the transition rates. Unlike the transition graphs of Chapter 2, a transition
rate graph never has arrows from one state to itself.

Example: Figure 4.2 shows the transition rate graph of the continuous-time Markov chain
with transition rate matrix

𝑄 =
⎛⎜⎜⎜
⎝

−3 1 2
0 −1 1
3 1 −4

⎞⎟⎟⎟
⎠

Figure 4.2: Example transition rate graph of 3-state continuous-time Markov chain

The label of each edge gives the transition rate, and can be interpreted as the frequency of the
given transition in the long run. In this model, transitions from “a” to “c” are twice as frequent
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as transitions from “a” to “b”, transitions from “b” to “a” are prohibited, and transitions from
“c” to “a” are three times as frequent as from “c” to “b”.

Example 4.1

1. The general 2-state continuous-time Markov chain has transition rate matrix

𝑄 = (−𝛼 𝛼
𝛽 −𝛽

)

with 𝛼, 𝛽 ≥ 0. The process will switch between the two states, with holding times
from Exp(𝛼) in state 0, and from Exp(𝛽) in state 2.

The embedded discrete-time Markov chain has transition probability matrix

𝑃 = (0 1
1 0

)

2. Consider the 3-state continuous-time Markov chain with transition rate matrix

𝑄 =
⎛⎜⎜⎜
⎝

−3 1 2
1 −2 1
0 0 0

⎞⎟⎟⎟
⎠

Holding times in state 0 are from the Exp(3) distribution, and holding times in
state 1 are from Exp(2). Once the process transitions to state 3, it never transitions
to states 1 and 2: state 3 is an absorbing state.

The transition probability matrix of the embedded discrete-time Markov chain is

𝑃 =
⎛⎜⎜⎜
⎝

0 1
3

2
3

1
2 0 1

2
0 0 1

⎞⎟⎟⎟
⎠

4.2.2 Simulating from a continuous-time Markov process

We now know how to simulate from a continuous-time Markov chain, given a transition rate ma-
trix. At each iteration, we generate waiting times for each possible transition from exponential
distributions, and the next state is the one with the shortest waiting time.

The following code simulates from a continuous-time Markov process with state space {0, 1, 2}
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and transition rate matrix

𝑄 =
⎛⎜⎜⎜
⎝

−3 1 2
0.5 −1 0.5
0.5 1 −1.5

⎞⎟⎟⎟
⎠

We also need a way to choose the initial state, and here we specify the initial distribution as
(0, 1, 0), i.e., such that 𝑋0 = 1. The algorithm runs until it reaches 𝑡 = 10.

# Random seed for reproducibility
set.seed(46012)

# Setup parameters
tmax <- 10
u <- c(0, 1, 0)
Q <- matrix(c(-3, 1, 2,

0.5, -1, 0.5,
0.5, 1, -1.5),

nrow = 3, byrow = TRUE)

# Initialise process
X <- sample(0:2, size = 1, prob = u)
times <- 0

# Loop until reaching tmax
while(times[length(times)] < tmax) {

# Get relevant row of Q
current_state <- X[length(X)]
rates <- Q[current_state + 1, -(current_state + 1)]

# Simulate waiting times and choose shorterst one
waiting_times <- rexp(2, rate = rates)
choice <- which.min(waiting_times)

# Save time of next jump
new_time <- times[length(times)] + waiting_times[choice]
times <- c(times, new_time)

# Save next state
new_state <- (0:2)[-(current_state + 1)][choice]
X <- c(X, new_state)

}
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times

[1] 0.0000 0.0656 0.5156 1.6927 3.3044 3.3405 4.1567 4.1841 5.1422
[10] 6.9326 7.7817 8.3152 8.3434 8.7406 8.8888 9.1658 9.6722 9.9540
[19] 10.3034

X

[1] 1 0 2 1 0 1 0 2 1 2 0 1 2 0 2 1 0 2 0

The output is a sequence of transition times, and the states to which the process jumps. This
is all we need to know the value of the process at any time 𝑡 ∈ [0, 10].

4.2.3 Explosive Markov chains

Definition 4.3

A continuous-time Markov chain is called explosive if an infinite number of transitions
can happen in a finite amount of time.

To illustrate this concept, consider the process defined over 𝒮 = ℕ, with initial distribution
(1, 0, 0, … ), and transition rate matrix

𝑄 =
⎛⎜⎜⎜⎜⎜⎜
⎝

−1 1 ⋅ ⋅ ⋅
⋅ −2 2 ⋅ ⋅
⋅ ⋅ −4 4 ⋅
⋅ ⋅ ⋅ ⋱ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

The chain starts in state 0, and then:

• it switches to 1 after a holding time from Exp(1);

• it switches to 2 after a holding time from Exp(2);

• it switches to 3 after a holding time from Exp(4);

and so on.

The holding times will be shorter and shorter, in such a way that an infinite number of transi-
tions can occur in a finite amount of time. To see this mathematically, denote as 𝑇𝑛 the 𝑛th
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4 Continuous-time Markov processes

holding time, and 𝑆𝑛 the time of the 𝑛th transition (i.e., 𝑆𝑛 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛). Then,

𝐸[𝑆𝑛] = 𝐸 [
𝑛

∑
𝑘=1

𝑇𝑘]

=
𝑛

∑
𝑘=1

𝐸[𝑇𝑘]

=
𝑛−1
∑
𝑘=0

1
2𝑘

using the property that the expectation of an exponential random variable is the inverse of its
rate. But lim𝑛→∞ 𝐸[𝑆𝑛] = 2 is finite, so an arbitrarily large number of transitions are expected
to have happened by 𝑡 = 2.

In the following, we assume that the Markov processes are non-explosive. This is always the
case for processes with finite state spaces; in the infinite case, we can ensure that sup𝑖{𝑞𝑖} < ∞,
i.e., the transition rates are bounded by a finite number.

4.3 Transient behaviour

4.3.1 Transition probabilities

Definition 4.4

Let (𝑋𝑡) be a homogeneous continuous-time Markov process. The transition probability
from state 𝑖 to state 𝑗 over a time interval of length 𝑡 ≥ 0 is

𝑃𝑖𝑗(𝑡) = Pr(𝑋𝑠+𝑡 = 𝑗 ∣ 𝑋𝑠 = 𝑖),

i.e., it is the probability that the process will be in state 𝑗 after 𝑡 time units, given that it
started in state 𝑖.

For a given time interval 𝑡, the transition probability matrix is

𝑃 (𝑡) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑃00(𝑡) 𝑃01(𝑡) 𝑃02(𝑡) ⋯
𝑃10(𝑡) 𝑃11(𝑡) 𝑃12(𝑡) ⋯
𝑃20(𝑡) 𝑃21(𝑡) 𝑃22(𝑡) ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

For a continuous-time Markov process, the transition probabilities can only be defined with
respect to some chosen time interval, as there is no predefined time grid. Each transition prob-
ability is therefore a function of time. These are not the same as the transition probabilities of
the embedded discrete-time Markov chain, and we might use the phrase “transition probabil-
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4.3 Transient behaviour

ity function” to make the distinction. We will see that transition probability function can be
evaluated for any time 𝑡 from the transition rates.

Remark: for any 𝑖 ≠ 𝑗, we have 𝑃𝑖𝑗(0) = 0 and 𝑃𝑖𝑖(0) = 1, so 𝑃(0) = 𝐼 .

Example 4.2

Consider the 3-state continuous-time Markov chain with transition rate matrix

𝑄 =
⎛⎜⎜⎜
⎝

−1 0.5 0.5
1 −3 2

0.5 1.5 −2

⎞⎟⎟⎟
⎠

The transition probability matrix of the embedded Markov chain is

𝑃 =
⎛⎜⎜⎜
⎝

0 1
2

1
2

1
3 0 2

3
1
4

3
4 0

⎞⎟⎟⎟
⎠

Let’s think about the interpretation of a particular transition probability function over
some given time interval, say 𝑃01(8.3). It measures the probability that the process starts
in state 0 and ends up in state 1 (after 8.3 time units), accounting for all possible combi-
nations and timings of transitions in between. Maybe the process jumped directly from
0 to 1, or maybe it also spent some time in state 2 during the interval. Maybe the last
transition to state 1 occurred at 𝑡 = 8, or maybe it occurred at 𝑡 = 6.8. As you can see
(and in contrast with the discrete-time setting), the probability 𝑃01(8.3) has to account
for an infinite number of possible sequence of events.

Proposition 4.2 (Chapman-Kolmogorov equation)

If 𝑃(𝑡) denotes the transition probability matrix of a continuous-time Markov process over
a time interval of length 𝑡, then we have

𝑃(𝑠 + 𝑡) = 𝑃(𝑠)𝑃 (𝑡)
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4 Continuous-time Markov processes

Proof

The proof is identical to the discrete-time case:

𝑃𝑖𝑗(𝑠 + 𝑡) = Pr(𝑋𝑠+𝑡 = 𝑗 ∣ 𝑋0 = 𝑖)
= ∑

𝑘∈𝒮
Pr(𝑋𝑠+𝑡 = 𝑗, 𝑋𝑠 = 𝑘 ∣ 𝑋0 = 𝑖) (a)

= ∑
𝑘∈𝒮

Pr(𝑋𝑠+𝑡 = 𝑗 ∣ 𝑋𝑠 = 𝑘, 𝑋0 = 𝑖) Pr(𝑋𝑠 = 𝑘 ∣ 𝑋0 = 𝑖) (b)

= ∑
𝑘∈𝒮

Pr(𝑋𝑠+𝑡 = 𝑗 ∣ 𝑋𝑠 = 𝑘) Pr(𝑋𝑠 = 𝑘 ∣ 𝑋0 = 𝑖) (c)

= ∑
𝑘∈𝒮

𝑃𝑘𝑗(𝑡)𝑃𝑖𝑘(𝑠)

= [𝑃 (𝑠)𝑃 (𝑡)]𝑖𝑗

where (a) is the law of total probability, (b) is the definition of conditional probability,
and (c) is the Markov property.

Because the transition probabilities are continuous functions of time, we can study them using
tools from analysis. In fact, we can derive differential equations to describe the dynamics of
the distribution of the chain through time. But first, we need the following result, which links
each transition probability function to a transition rate.

Proposition 4.3

The transition probability functions and transition rates satisfy

lim
ℎ→0

𝑃𝑖𝑗(ℎ)
ℎ = 𝑞𝑖𝑗 and lim

ℎ→0
1 − 𝑃𝑖𝑖(ℎ)

ℎ = 𝑞𝑖.

Proof

We will only prove the first part of the proposition, but the second part follows a similar
reasoning.

We consider the probability of jumping from 𝑖 to 𝑗 over a short time interval of length
ℎ. This requires two independent events: (1) that the holding time in state 𝑖 is shorter
than ℎ, and (2) that, once the process jumps, it jumps to state 𝑗. Things are a little more
complex because there could be more than one jump, but the probability of that is 𝑜(ℎ)
(i.e., very small for short time intervals).

Let 𝐷𝑖 be the holding time in state 𝑖, and 𝑃𝑖𝑗 the transition probability from 𝑖 to 𝑗 condi-
tional on a jump (as defined in Section 4.2.1). We can rewrite the transition probability

86



4.3 Transient behaviour

function as
𝑃𝑖𝑗(ℎ) = Pr(𝑋ℎ = 𝑗 ∣ 𝑋0 = 𝑖)

= Pr(𝐷𝑖 ≤ ℎ)𝑃𝑖𝑗 + 𝑜(ℎ)
= (1 − 𝑒−𝑞𝑖ℎ)𝑞𝑖𝑗

𝑞𝑖
+ 𝑜(ℎ) (a)

= (1 − [1 − 𝑞𝑖ℎ + 𝑜(ℎ)])𝑞𝑖𝑗
𝑞𝑖

+ 𝑜(ℎ) (b)

= 𝑞𝑖𝑗ℎ + 𝑜(ℎ), (c)

where (a) uses the cumulative distribution function of the exponential distribution,
(b) uses the Taylor expansion of the exponential function, and (c) uses the fact that
𝑘 × 𝑜(ℎ) = 𝑜(ℎ) for any constant 𝑘.

Because 𝑜(ℎ)/ℎ tends to zero as ℎ → 0, we can now compute the required limit as

lim
ℎ→0

𝑃𝑖𝑗(ℎ)
ℎ = lim

ℎ→0
{𝑞𝑖𝑗ℎ + 𝑜(ℎ)

ℎ }

= 𝑞𝑖𝑗.

Note that this proof provides an alternative definition of the transition rates, through the
relationship

𝑃𝑖𝑗(ℎ) = 𝑞𝑖𝑗ℎ + 𝑜(ℎ).

Some books present continuous-time Markov chains first using the transition probability func-
tions, and then define the rates using this formula. This is similar to the second (“little-o”)
definition of Poisson processes that we saw in Chapter 3, and it says that, over a short time
interval ℎ, the probability of jumping from state 𝑖 to state 𝑗 is approximately proportional to
the transition rate 𝑞𝑖𝑗.

Proposition 4.4 (Kolmogorov equations)

If we denote as 𝑃 ′ the matrix with elements 𝑃 ′
𝑖𝑗 = 𝑑𝑃𝑖𝑗/𝑑𝑡, we have the two following

relationships.

Forward equation:
𝑃 ′(𝑡) = 𝑃(𝑡)𝑄

Backward equation:
𝑃 ′(𝑡) = 𝑄𝑃(𝑡)
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4 Continuous-time Markov processes

Proof

To prove the forward equation, we look at the range of change of the transition probability
function over a short time interval.

𝑃𝑖𝑗(𝑡 + ℎ) − 𝑃𝑖𝑗(𝑡)
ℎ = 1

ℎ {∑
𝑘∈𝒮

𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(ℎ) − 𝑃𝑖𝑗(𝑡)} (a)

= 1
ℎ {𝑃𝑖𝑗(𝑡)𝑃𝑗𝑗(ℎ) + ∑

𝑘≠𝑗
𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(ℎ) − 𝑃𝑖𝑗(𝑡)} (b)

= 1
ℎ {𝑃𝑖𝑗(𝑡)[𝑃𝑗𝑗(ℎ) − 1] + ∑

𝑘≠𝑗
𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(ℎ)} (c)

= 𝑃𝑖𝑗(𝑡)
𝑃𝑗𝑗(ℎ) − 1

ℎ + ∑
𝑘≠𝑗

𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(ℎ)
ℎ ,

where (a) is the Chapman-Kolmogorov equation, (b) takes the 𝑘 = 𝑗 term out of the sum,
and (c) factorises the 𝑃𝑖𝑗 terms.

Taking the limit as ℎ → 0 on both sides, and using the definition 𝑞𝑗𝑗 = −𝑞𝑗, we find

𝑃 ′
𝑖𝑗(𝑡) = −𝑞𝑗𝑃𝑗𝑗(𝑡) + ∑

𝑘≠𝑗
𝑞𝑘𝑗𝑃𝑖𝑘(𝑡)

= ∑
𝑘∈𝒮

𝑞𝑘𝑗𝑃𝑖𝑘(𝑡)

= [𝑃 (𝑡)𝑄]𝑖𝑗.

The proof of the backward equation is almost identical, except it starts from 𝑃𝑖𝑗(𝑡 + ℎ) =
∑𝑘∈𝒮 𝑃𝑖𝑘(ℎ)𝑃𝑘𝑗(𝑡).

The Kolmogorov equations are differential equations with a familiar form; the scalar analogue is
𝑓 ′(𝑡) = 𝑞𝑓(𝑡). Like in the scalar case, only one function satisfies this equation: the exponential.
This gives us a convenient relationship between the transition probability functions and the
generator matrix of a continuous-time Markov chain.

Proposition 4.5

Consider a continuous-time Markov chain with transition function 𝑃(𝑡) and generator
matrix 𝑄. We have

𝑃(𝑡) = exp(𝑡𝑄).

In other words, by definition of the matrix exponential,

𝑃(𝑡) =
∞

∑
𝑛=0

1
𝑛!(𝑡𝑄)𝑛 = 𝐼 + 𝑡𝑄 + 𝑡2

2 𝑄2 + 𝑡3

6 𝑄3 + ⋯ ,
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4.3 Transient behaviour

which is, in general, not the same as taking the exponential of each element in 𝑡𝑄.

This is a very important result, as it gives a direct way to compute the transition probabilities
of a continuous-time process over any time interval, in terms of the transition rate matrix. As
required, this formula accounts for all possible sequence of events during that interval.

Computing matrix exponentials with high accuracy is a difficult general problem in numerical
analysis, but we won’t worry about it here. There are many efficient algorithms, e.g., imple-
mented in the R function expm() (from the eponymous package), and those work fine for our
purposes.

Example 4.3

We return to the 3-state continuous-time Markov chain from a previous example, with
transition rate matrix

𝑄 =
⎛⎜⎜⎜
⎝

−1 0.5 0.5
1 −3 2

0.5 1.5 −2

⎞⎟⎟⎟
⎠

Using R, compute 𝑃(1), 𝑃(2), and 𝑃(5).

# Load library for matrix exponential
library(expm)

# Define transition rate matrix
Q <- matrix(c(-1, 0.5, 0.5,

1, -3, 2,
0.5, 1.5, -2),

nrow = 3, byrow = TRUE)

# Compute transition probability matrices
expm(1 * Q)

[,1] [,2] [,3]
[1,] 0.522 0.203 0.275
[2,] 0.357 0.270 0.374
[3,] 0.324 0.268 0.408

expm(2 * Q)

[,1] [,2] [,3]
[1,] 0.434 0.234 0.332
[2,] 0.403 0.245 0.351
[3,] 0.397 0.247 0.356
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4 Continuous-time Markov processes

expm(5 * Q)

[,1] [,2] [,3]
[1,] 0.414 0.241 0.345
[2,] 0.414 0.241 0.345
[3,] 0.414 0.241 0.345

We can make a few observations:
• as expected, the rows of the transition probability matrices sum to 1;
• similarly to the discrete-time case, the transition probabilities over long time intervals

seem to converge to some distribution.

4.3.2 Marginal distribution

The marginal distribution of 𝑋𝑡 is the probability distribution 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), … ) defined
by

𝑢𝑗(𝑡) = Pr(𝑋𝑡 = 𝑗), for all 𝑗 ∈ 𝒮.

Like in discrete time, we can use the law of total probability to rewrite this as

𝑢𝑗(𝑡) = ∑
𝑖∈𝒮

Pr(𝑋𝑡 = 𝑗 ∣ 𝑋0 = 𝑖) Pr(𝑋0 = 𝑖)

= ∑
𝑖∈𝒮

𝑃𝑖𝑗(𝑡)𝑢𝑖(0)

= [𝑢(0)𝑃 (𝑡)]𝑗

Finally, given the initial distribution 𝑢(0) and the transition rate matrix 𝑄, the distribution of
𝑋𝑡 can then be computed as

𝑢(𝑡) = 𝑢(0)𝑃 (𝑡)
= 𝑢(0) exp(𝑡𝑄).

4.4 Long-term behaviour

Like for their discrete-time counterparts, we are often interested in the long-term properties
of continuous-time Markov chains, and in particular the convergence of the distribution of the
process to some limit. Many discrete-time results have a continuous-time version, and we go
over them more briefly in this chapter.

90



4.4 Long-term behaviour

Definition 4.5

Consider a continuous-time Markov process (𝑋𝑡) with transition probability function 𝑃(𝑡).
The probability distribution 𝜋 is a stationary distribution of (𝑋𝑡) if, for all 𝑡 ≥ 0,

𝜋 = 𝜋𝑃(𝑡)

It is usually more useful to rewrite this definition in terms of the transition rates, rather than
the transition probabilities.

Proposition 4.6

The distribution 𝜋 is a stationary distribution of the Markov chain with generator matrix
if and only if

𝜋𝑄 = 0.

Proof

To prove the equivalence, we prove each implication separately: (1) 𝜋𝑄 = 0 ⇒ 𝜋𝑃(𝑡) = 𝜋,
and (2) 𝜋𝑃 (𝑡) = 𝜋 ⇒ 𝜋𝑄 = 0.

1. Assume that there exists a distribution 𝜋 such that 𝜋𝑄 = 0. If we take Kolmogorov’s
backward equation, and multiply each side by 𝜋, we get

𝑃 ′(𝑡) = 𝑄𝑃(𝑡)
⇒ 𝜋𝑃 ′(𝑡) = 𝜋𝑄𝑃(𝑡)
⇒ 𝜋𝑃 ′(𝑡) = 0,

where the last step uses the assumption that 𝜋𝑄 = 0. So, we have

𝑑
𝑑𝑡𝜋𝑃(𝑡) = 0,

i.e., 𝜋𝑃(𝑡) is constant with respect to 𝑡. But we also know that 𝑃(0) = 𝐼 , so
𝜋𝑃(𝑡) = 𝜋𝑃 (0) = 𝜋 for all 𝑡 ≥ 0, as required.

2. Assume that there exists a distribution 𝜋 such that 𝜋𝑃(𝑡) = 𝜋 for all 𝑡 ≥ 0. So, for
any ℎ > 0, we have

𝜋𝑃(ℎ) = 𝜋
⇒ 𝜋(𝑃(ℎ) − 𝐼) = 0

⇒ 𝜋 (𝑃(ℎ) − 𝐼
ℎ ) = 0

⇒ 𝜋 (𝑃(ℎ) − 𝑃(0)
ℎ ) = 0
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Taking the limit as ℎ → 0, we find

𝜋𝑃 ′(0) = 0
⇒ 𝜋𝑃(0)𝑄 = 0 (a)

⇒ 𝜋𝑄 = 0, (b)

where (a) uses the Kolmogorov forward equation, and (b) follows from the assump-
tion that 𝜋𝑃(𝑡) = 𝜋.

Finally, we have shown the equivalence.

This last result gives us a practical method to find the stationary distribution of a continuous-
time Markov process based on its transition rate matrix, by solving a system of linear equa-
tions.

Now that we have defined what a stationary distribution distribution is, we turn to its con-
nection to the long-term behaviour of the chain in the following two theorems. The properties
of communication, irreducibility, transience and recurrence are defined in the same way as for
discrete-time chains; and note that periodicity does not exist in continuous time.

Theorem 4.1

Let (𝑋𝑡) be a finite, irreducible continuous-time Markov chain with transition function
𝑃(𝑡). Then, there exists a unique stationary distribution 𝜋, which is the limiting distribu-
tion. That is, for all 𝑖, 𝑗 ∈ 𝒮,

lim
𝑡→∞

𝑃𝑖𝑗(𝑡) = 𝜋𝑗.

This limit theorem explains the phenomenon observed in a previous example that each row
of 𝑃(𝑡) seems to converge to the same distribution as 𝑡 → ∞. It offers an alternative, prag-
matic method to compute the stationary/limiting distribution of an irreducible continuous-time
Markov process: compute exp(𝑡𝑄) for some large 𝑡.

Theorem 4.2

Let (𝑋𝑡) be an irreducible, positive recurrent continuous-time Markov chain with unique
stationary distribution 𝜋. Then, for any 𝑖 ∈ 𝒮, the long-run proportions are

lim
𝑡→∞

1
𝑡 ∫

𝑡

0
𝕀{𝑋𝑠=𝑖} 𝑑𝑠 = 𝜋𝑖.

So, like in the discrete-time case, the stationary distribution gives the long-run proportion of
time spent in each state.
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Example 4.4

We use continuous-time Markov chains to model the behavioural states of an animal (e.g.,
“eating”, “resting”). Let’s say that pandas have three behavioural states, 0 = “resting”,
1 = “eating” , and 2 = “travelling”, and that they jump between them at the following
rates:

𝑄 =
⎛⎜⎜⎜
⎝

−3 2 1
5 −20 15
6 2 −8

⎞⎟⎟⎟
⎠

where time is measured in days. Looking at the diagonal elements, we see that, on
average, pandas rest for 24/3 = 8 h, eat for 24/20 = 1.2 h, and travel for 24/8 = 3 h
before jumping to another activity.

Compute the proportion of time that pandas spend in each behavioural state in the long
term. (This is often called the “activity budget” by biologists.)

We can rewrite 𝜋𝑄 as the system of equations

⎧{{
⎨{{⎩

−3𝜋0 + 5𝜋1 + 6𝜋2 = 0 (A)

2𝜋0 − 20𝜋1 + 2𝜋2 = 0 (B)

𝜋0 + 15𝜋1 − 8𝜋2 = 0 (C)

Note that the equations are not linearly independent, because (A) = −((B) + (C)), but
we can replace one of them by the constraint 𝜋0 + 𝜋1 + 𝜋2 = 1. Solving these equations,
either by hand or using a computer (e.g., solve() in R), we find

⎧{{
⎨{{⎩

𝜋0 = 65
99 ≈ 0.657

𝜋1 = 1
11 ≈ 0.091

𝜋2 = 25
99 ≈ 0.253

That is, pandas spend approximately 66% of their time sleeping, 9% of their time eating,
and 25% of their time travelling.

4.5 Some special cases

4.5.1 Birth-death process

A birth-death process is a continuous-time Markov chain with state space 𝒮 = {0, 1, 2, … },
which models the number of individuals in a population. As the name suggests, the dynamics
of the process is defined by two phenomena, whose rates can depend on the population size: a
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birth increases the population by 1, and a death decreases it by 1. We can view this model as
a continuous-time Markov chain with generator matrix

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑞0 𝑞01 0 0 ⋯
𝑞10 −𝑞1 𝑞12 0 ⋯
0 𝑞21 −𝑞2 𝑞23 ⋯
0 0 𝑞32 −𝑞3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where, for a population of size 𝑛 > 0,

• 𝑞𝑛,𝑛+1 is the birth rate, i.e., the rate of transitions from 𝑛 to 𝑛 + 1;
• 𝑞𝑛,𝑛−1 is the death rate, i.e., the rate of transitions from 𝑛 to 𝑛 − 1;
• 𝑞𝑛 = 𝑞𝑛,𝑛−1 + 𝑞𝑛,𝑛−1 is the rate of transitions out of state 𝑛.

The embedded discrete-time Markov chain has transition probabilities

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 ⋯
𝑞10

𝑞10+𝑞12
0 𝑞12

𝑞10+𝑞12
0 ⋯

0 𝑞21
𝑞21+𝑞23

0 𝑞23
𝑞21+𝑞23

⋯
0 0 𝑞32

𝑞32+𝑞34
0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and the waiting time in state 𝑛 follows an exponential distribution with rate 𝑞𝑛,𝑛−1 + 𝑞𝑛,𝑛−1.

Remark: A Poisson process is a birth-death process where the death rate is zero, and where
the birth rate is not dependent on the population size (𝑞01 = 𝑞12 = ⋯ = 𝜆). That is, the
population can only increase through time, never decrease.

Example 4.5: linear birth-death process

A seemingly reasonable assumption would be that the birth and death rates are both
proportional to population size. This gives rise to the birth-death process with transition
rates

𝑞𝑛,𝑛+1 = 𝜆𝑛
𝑞𝑛,𝑛−1 = 𝜇𝑛

where 𝜆 > 0 and 𝜇 > 0 are the per-individual birth and death rates, respectively. This
model is called a linear birth-death model, because the rates are linear in the population
size.

How do we expect the population to evolve over time, under this model? When the
population is 𝑛, the rate of increase is 𝜆𝑛 and the rate of decrease is 𝜇𝑛, so we can think
of the overall rate of population change as (𝜆 − 𝜇)𝑛. Using the Kolmogorov forward
equations, we can show that the expected change is exponential under this model; the
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population increases exponentially if 𝜇 < 𝜆, and it decreases exponentially if 𝜆 < 𝜇. Note
that zero is an absorbing state in this process: if the population size is zero, then it will
remain there. Figure 4.3 shows example realisations from linear birth-death processes with
different values of the birth and death rates.

λ = 0.03 and µ = 0.01 λ = 0.1 and µ = 0.03 λ = 0.01 and µ = 0.1
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Linear birth−death process

Figure 4.3: Examples of linear birth-death process.

4.5.2 Queueing process

The study of queues has many applications, such as customers at a store or a bank, patients in
the emergency service of a hospital, or people waiting on hold on the phone. A common model,
called the 𝑀/𝑀/𝑘 model (where the “𝑀”s stand for “Markov” or “memoryless”), assumes
that:

1. there are 𝑘 servers (e.g., doctors at the ER, or tills at the store);
2. arrivals in the queue follow a Poisson process with rate 𝜆;
3. the serving time by each operator follows an exponential distribution with rate 𝜇.

From this model, one can derive the expected number of people waiting in line in the long run
(when it exists), or the expected waiting time spent in line, as functions of 𝑘, 𝜆 and 𝜇. An ER
service could for example use this to determine how many doctors they need to ensure that
patients never have to wait longer than 3 hours before being treated.

4.6 Continuous state space: Brownian motion
Many well-studied continuous-time Markov processes are defined over an uncountable state
space, e.g., 𝒮 = ℝ or 𝒮 = [0, ∞). This formulation is useful in situations where the phenomenon
of interest is continuous, such as the value of a stock price, or the position of a particle in space.
An important class of continuous-time continuous-space Markov processes is diffusion processes,
which have been widely used in fields such as physics, biology, and finance. Brownian motion
is the building block of all diffusion processes, and we introduce it briefly in this section.

The motivation for Brownian motion was the observation (by 19th century biologist Robert
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Brown) that particles of pollen in water follow erratic and seemingly random trajectories. This
phenomenon is caused by collisions with water molecules, and it was first described mathemati-
cally in the early 20th century by Albert Einstein. The properties of the resulting process were
further explored by Norbert Wiener, and Brownian motion is also called the Wiener process.

Definition 4.7

A continuous-time stochastic process (𝐵𝑡) is a standard Brownian motion if it satisfies
the following properties.

1. For all 𝑠, 𝑡 > 0, 𝐵𝑠+𝑡 − 𝐵𝑠 has a normal distribution with mean 0 and variance 𝑡.
2. For any 0 ≤ 𝑞 < 𝑟 ≤ 𝑠 < 𝑡, the increments 𝐵𝑡 − 𝐵𝑠 and 𝐵𝑟 − 𝐵𝑞 are independent

random variables.
3. The function 𝑡 ↦ 𝐵𝑡 is continuous, with probability 1. (Also sometimes stated as:

the sample paths of (𝐵𝑡) are continuous.)

The additional condition that 𝐵0 = 0 is also sometimes included in the definition of Brownian
motion. More generally, we can assume that 𝐵0 is specified as part of the model formulation
as an initial condition.

The properties of Brownian motion suggest the following method to generate sample paths from
the process over some time grid 𝑡0, 𝑡1, … , 𝑡𝑛. We start from some intial condition 𝐵𝑡0

= 𝑏0,
and, for 𝑖 = 0, … , 𝑛 − 1,

1. generate a normally distributed increment 𝜀𝑖 ∼ 𝑁(0, 𝑡𝑖+1 − 𝑡𝑖);

2. compute the next value of the process as 𝐵𝑡𝑖+1
= 𝐵𝑡𝑖

+ 𝜀𝑖.

This algorithm can for example be implemented in R using the random number generator
rnorm(). This is very similar to the procedure used in Chapter 2 to simulate from a (discrete-
time) Gaussian random walk, and Brownian motion can be viewed as the continuous-time
analogue. Note that, here, we can sample the path over an arbitrarily fine time grid. Figure 4.4
shows three simulated realisations from a standard Brownian motion with initial condition
𝐵0 = 0, over 𝑡 ∈ [0, 10]. The three paths start from 0, and they spread more and more as they
fluctuate randomly through time.

Example 4.6: Brown’s pollen

The motivation for developing the theory of Brownian motion was the movements of
pollen in water. The definition of Brownian motion describes a one-dimensional process,
so how can this be used for the movement of pollen in two dimensions? The simplest
approach is to assume that the two coordinates follow two independent Brownian motions
(this is called “isotropy”).

Figure 4.5 shows a path simulated from a two-dimensional isotropic Brownian motion,
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Figure 4.4: Example realisations from a standard Brownian motion process over the interval 0 ≤ 𝑡 ≤
10.

perhaps resembling the pollen trajectories observed by Brown. A more sophisticated model
could assume that the x and y coordinates are correlated, which could for example favour
movement along a particular direction.
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Figure 4.5: Example realisation from a standard isotropic Brownian motion process in two
dimensions. The initial position is shown as a red dot.

One key feature of Brownian motion is its scaling property: no matter how much we “zoom
in”, the process is still a Brownian motion.

Proposition 4.7

Let (𝐵𝑡) be a standard Brownian motion process with initial condition 𝐵0 = 0. For any
𝑎 > 0, 𝐵𝑎𝑡 and

√𝑎𝐵𝑡 have the same distribution.
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Proof

By definition of Brownian motion, 𝐵𝑎𝑡 ∼ 𝑁(0, 𝑎𝑡). But, using the properties 𝐸[𝑎𝑋] =
𝑎𝐸[𝑋] and 𝑉 𝑎𝑟[𝑎𝑋] = 𝑎2𝑉 𝑎𝑟[𝑋], we also have

𝐵𝑡 ∼ 𝑁(0, 𝑡)
⇒ √𝑎𝐵𝑡 ∼ 𝑁(0, 𝑎𝑡).

The rescaling property of Brownian motion is illustrated in Figure 4.6. No matter how much we
zoom into a Brownian motion path, the behaviour of the process is the same, in the sense that
it has independent, normally distributed increments with variance proportional to the length of
the time interval. Brownian motion can be viewed as part of the general mathematical family
of fractals.
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Figure 4.6: Simulated Brownian motion path over three different time intervals. In the first two
panels, the grey boxes show the zoomed area of the next panel.

It turns out that the rescaling property of Brownian motion implies that its paths are nowhere
differentiable, even if it is continuous everywhere. We will not prove this result, but it relies on
the following intuition. The derivative of the process can be defined as

𝑑
𝑑𝑡𝐵𝑡 = lim

ℎ→0
𝐵𝑡+ℎ − 𝐵𝑡

ℎ .

By definition of Brownian motion, 𝐵𝑡+ℎ−𝐵𝑡 has a normal distribution with mean 0 and variance
ℎ. So, (𝐵𝑡+ℎ−𝐵𝑡)/ℎ is also normally distributed with mean 0 and, using 𝑉 𝑎𝑟[𝑎𝑋] = 𝑎2𝑉 𝑎𝑟[𝑋],
we have

𝑉 𝑎𝑟 [𝐵𝑡+ℎ − 𝐵𝑡
ℎ ] = 1

ℎ2 𝑉 𝑎𝑟[𝐵𝑡+ℎ − 𝐵𝑡] = 1
ℎ.

As ℎ → 0, the variance tends to ∞, so the limit is not well defined and the derivative does not
exist.
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Markov processes are a convenient approach to model temporal dependence while retaining
(some) mathematical simplicity but, to estimate the Markov process from data, we need to
observe that process directly. However, there are many situations where the process is observed
only indirectly, i.e., our observations depend on something that can be described by a Markov
process. There is a vast literature on models for such situations; they are called state-space
models when the state space of the Markov process is continuous, and hidden Markov models
when it is discrete.

Hidden Markov models were developed more recently than other models covered in this course,
as illustrated in Figure 5.1, but they are now widely-used in various areas of applications
(finance, medicine, ecology, etc.).
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Figure 5.1: Relative frequency of model names according to the Google Ngram viewer.

5.1 Mixture models
We start with the description of mixture models, on which hidden Markov models build. A
mixture model describes a random variable which can come from several different distributions,
each with some probability.

Consider the random variable 𝑍, which follows one of 𝐾 distributions, with respective proba-
bility density (or mass) functions 𝑏1, 𝑏2, … , 𝑏𝐾. For any 𝑘 ∈ {1, … , 𝐾}, we further assume that
𝑍 follows the 𝑘th distribution (𝑏𝑘) with probability 𝜋𝑘, where ∑𝐾

𝑘=1 𝜋𝑘 = 1.
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Notation

Throughout this chapter, we will consider random variables that can be either discrete or
continuous. Rather than writing every equation twice, we will use generic notation that
applies in both cases.

Specifically, we will use 𝑓(𝑍 = 𝑧) to represent either a probability (if 𝑍 is discrete) or a
probability density (if 𝑍 is continuous).

The probability mass/density function of 𝑍 under this model is a linear combination of the
component functions, each weighted by the probability of the component:

𝑓(𝑍 = 𝑧) =
𝐾

∑
𝑘=1

𝑓(𝑍 = 𝑧 ∣ 𝐶 = 𝑘) × Pr(𝐶 = 𝑘)

=
𝐾

∑
𝑘=1

𝜋𝑘𝑏𝑘(𝑧)

Examples of mixture model with three components is shown in Figure 5.2. For one of them,
the 𝑏𝑘 are normal probability distribution functions; for the other, they are Poisson probability
mass functions. In both cases, the mixture model has much more flexibility than a single
distribution from that family.
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Figure 5.2: Example mixture models with three components 𝑝1, 𝑝2, 𝑝3, resulting in the probability
distribution 𝑓𝑍 shown in black. The component distributions are weighted by the prob-
abilities 𝜋1, 𝜋2, 𝜋3. On the left, each component is a normal distribution; on the right,
each component is a Poisson distribution.

Mixture models have been popular for model-based clustering. Consider 𝑛 observations
𝑧1, … , 𝑧𝑛, assumed to be realisations from 𝑛 independent random variables described by
some mixture model. Various approaches have been developed to estimate parameters of the
component distributions and the weight 𝜋𝑖 of each component, and to group the observations
by “most likely component”.
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5.1 Mixture models

Example 5.1

Consider the distribution of flipper length from 344 penguins shown in Figure 5.3 (from
the R package palmerpenguins). The distribution is clearly bimodal, and we suspect that
data from two different species have been mixed up.
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Figure 5.3: Histogram of flipper lengths in penguin data set.

A Gaussian mixture model could be used to answer questions such as:
1. Which species does each data point belong to?
2. What is the distribution of flipper lengths for each species?
3. What is the overall distribution of flipper lengths for both species?

Figure 5.4 shows the two distributions that we would obtain from a Gaussian mixture
model fitted to these data.
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Figure 5.4: Estimated mixture distributions for penguin flipper data.

Hidden Markov models can be viewed as dependent mixture models, i.e., where successive
observations are not independent.
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5.2 Hidden Markov models

5.2.1 Definition

A hidden Markov model (HMM) consists of two stochastic processes, a state process (𝑋𝑛), and
a state-dependent observation process (𝑍𝑛). Both processes can in principle be continuous-
valued, but we will focus on the case where 𝑋𝑛 is defined over a countable set 𝒮 ≡ {0, 1, 2, … }.
Time can also be discrete or continuous, and in this chapter we focus on discrete-time HMMs,
with the index 𝑚 or 𝑛. (We sometimes prefer 𝑚 because 𝑛 is traditionally used for the size of
the data set, as we do when discussing the likelihood derivation below.)

HMMs are characterised by the following dependence assumptions:

1. The state process (𝑋𝑛) is a Markov chain, such that

Pr(𝑋𝑛+1 ∣ 𝑋𝑛, 𝑋𝑛−1, … , 𝑋0) = Pr(𝑋𝑛+1 ∣ 𝑋𝑛).

2. The observation 𝑍𝑛 is independent of past values of the process, conditional on the current
state 𝑋𝑛. That is,

𝑓(𝑍𝑛 ∣ 𝑍𝑛−1, … , 𝑍0, 𝑋𝑛, … , 𝑋0) = 𝑓(𝑍𝑛 ∣ 𝑋𝑛)

That is, 𝑍𝑛 comes from a mixture model, where the mixture component active at time 𝑛 is
given by 𝑋𝑛. In most situations, the Markov chain is such that there is persistence in the state
(i.e., the process tends to remain in the same state for several time steps), and this creates
correlation between successive values of 𝑍𝑛.

A simulated realisation from an HMM where 𝑋𝑛 ∈ {0, 1, 2} and 𝑍𝑛 ∣ 𝑋𝑛 = 𝑗 ∼ Pois(𝜆𝑗) is
shown in Figure 5.5. It is clear that the dependence on 𝑋𝑛 induces autocorrelation in the
observation process (𝑍𝑛).

Terminology: What exactly is “hidden”?

This is called a hidden Markov model because, in practice, we usually only have obser-
vations from the state-dependent process (𝑍𝑛), but no direct observations from the state
process (𝑋𝑛). The state process is therefore “hidden”, or “unobserved”, or “latent”. The
problem is then to try to infer the dynamics of the hidden state process, based on the
observations. This type of inference is very common, because it is often the case that we
cannot directly observe the phenomenon of interest, e.g., because of measurement error.
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Figure 5.5: Simulation from a 3-state hidden Markov model with Poisson state-dependent distribu-
tions. The top panel shows the simulated state sequence, the bottom-left panel shows
the simulated observation sequence, and the bottom-right panel shows the three Poisson
distributions.

5.2.2 Marginal distribution

The model for the observation process (𝑍𝑡) is defined through the conditional distribution of
𝑍𝑡 given the state 𝑋𝑡. We denote as 𝑏𝑘 the probability density/mass function of 𝑍𝑡 in state 𝑘,
i.e., 𝑏𝑘(𝑧) = 𝑓(𝑍𝑛 = 𝑘 ∣ 𝑋𝑛 = 𝑘). Let 𝐵(𝑧) be the diagonal matrix with 𝑖th diagonal element
𝑏𝑖(𝑧). Like in Chapter 2, let 𝑢(𝑛) = (𝑢(𝑛)

0 , 𝑢(𝑛)
1 , … ) be the probability distribution of 𝑋𝑛, i.e.,

𝑢(𝑛)
𝑖 = Pr(𝑋𝑛 = 𝑖).

We are sometimes interested in the marginal distribution of the observation in a hidden Markov
model, i.e., 𝑓(𝑍𝑛 = 𝑧) (not conditional on the state 𝑋𝑛). By the law of total probability, we
have

𝑓(𝑍𝑛 = 𝑧) = ∑
𝑖∈𝒮

Pr(𝑋𝑛 = 𝑖)𝑓(𝑍𝑛 = 𝑧 ∣ 𝑋𝑛 = 𝑖)

= ∑
𝑖∈𝒮

𝑢(𝑛)
𝑖 𝑏𝑖(𝑧)

= 𝑢(𝑛)𝐵(𝑧)1⊺,
where 1 is a (row) vector of ones. From Chapter 2, we know that the distribution of the state
variable 𝑋𝑛 can be written in terms of its initial distribution 𝑢(0) and transition probability
matrix 𝑃 , as 𝑢(𝑛) = 𝑢(0)𝑃 𝑛. (This was a consequence of the Chapman-Kolmogorov equations.)
Using this result, we find

𝑓(𝑍𝑛 = 𝑧) = 𝑢(0)𝑃 𝑛𝐵(𝑧)1⊺.
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5.2.3 Simulating from a hidden Markov model

We use the dependence structure to define a simulation procedure. The hidden state process
is simply a discrete-time Markov chain, so we can simulate it as described in Chapter 2. Once
we have a simulated state sequence, we can simulate the observation process at each time step
conditionally on the state.

1. Initialise 𝑋0 based on the initial distribution 𝑢(0).

2. For 𝑛 = 1, 2, …, simulate 𝑋𝑛 conditionally on 𝑋𝑛+1 = 𝑖 using the transition probabilities
{𝛾𝑖𝑗}𝑗∈𝒮 (i.e., the 𝑖th row of the transition probability matrix).

3. For 𝑛 = 0, 1, …, simulate 𝑍𝑛 conditionally on 𝑋𝑛 = 𝑖 using the observation distribution
𝑏𝑖.

The following code shows an example over 100 time steps, for a 2-state hidden Markov model
with normal state-dependent distributions, with model parameters

𝑢(0) = (0.5, 0.5)

𝑃 = ( 0.9 0.1
0.05 0.95

)

𝑍𝑛 ∣ 𝑋𝑛 = 0 ∼ 𝑁(10, 32)
𝑍𝑛 ∣ 𝑋𝑛 = 1 ∼ 𝑁(20, 22)

# Set random seed for reproducibility
set.seed(294)

# Define parameters
n <- 200
u <- c(0.5, 0.5)
P <- matrix(c(0.9, 0.1,

0.05 , 0.95),
nrow = 2, byrow = TRUE)

mu <- c(10, 20)
sigma <- c(3, 2)

# Simulate state process
X <- rep(NA, length = n)
X[1] <- sample(0:1, size = 1, prob = u)
for(i in 2:n) {

P_row <- P[X[i-1] + 1,]
X[i] <- sample(0:1, size = 1, prob = P_row)
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}

# Simulate observation process
Z <- rep(NA, length = n)
for(i in 1:n) {

Z[i] <- rnorm(1, mean = mu[X[i] + 1], sd = sigma[X[i] + 1])
}

ggplot(data.frame(time = 1:n, X = X, Z = Z), aes(time, Z)) +
geom_line(lty = 2, linewidth = 0.1) +
geom_point(aes(col = factor(X))) +
scale_color_manual(values = c("#00798c", "#d1495b"), guide = "none")
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5.3 Likelihood
Hidden Markov models are mostly interesting to applied statisticians and scientists (rather
than probabilists), and so most of the related work has been on statistical inference. Given a
sequence of observations, the main questions are usually:

• Can we estimate the state-dependent distributions 𝑏𝑘?
• Can we estimate the transition probabilities of the underlying Markov chain?
• Can we infer the most likely value for the state process at each time step?

The starting point is then to look at the likelihood function for this model. This section
presents two methods to compute the likelihood. The mathematical derivations might seem a
little tedious, but you will notice that we only use basic probability rules, and we take advantage
of the dependence structure of the hidden Markov model to find the likelihood.

5.3.1 First attempt

We want to find the joint probability density/mass function of the random variables
𝑍0, 𝑍1, … , 𝑍𝑛, which we will denote as 𝐿 = 𝑓(𝑍0 = 𝑧0, … , 𝑍𝑛 = 𝑧𝑛) for convenience. When
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viewed as a function of the unknown model parameters, 𝐿 is the likelihood, and can be
maximised numerically for estimation. We will also write 𝑍0∶𝑛 = {𝑍0, … , 𝑍𝑛} and similar
notation for brevity.

By repeatedly applying the law of total probability, and leveraging the Markov property of
(𝑋𝑛), we see that

𝐿 = ∑
𝑋𝑛∈𝒮

𝑓(𝑍0∶𝑛 ∣ 𝑋𝑛) Pr(𝑋𝑛)

= ∑
𝑋𝑛∈𝒮

∑
𝑋𝑛−1∈𝒮

𝑓(𝑍0∶𝑛 ∣ 𝑋𝑛−1, 𝑋𝑛) Pr(𝑋𝑛 ∣ 𝑋𝑛−1) Pr(𝑋𝑛−1)

= ∑
𝑋𝑛∈𝒮

∑
𝑋𝑛−1∈𝒮

∑
𝑋𝑛−2∈𝒮

𝑓(𝑍 ∶𝑛 ∣ 𝑋𝑛−2, 𝑋𝑛−1, 𝑋𝑛)

× Pr(𝑋𝑛 ∣ 𝑋𝑛−1, 𝑋𝑛−2) Pr(𝑋𝑛−1 ∣ 𝑋𝑛−2) Pr(𝑋𝑛−2)
= ∑

𝑋𝑛∈𝒮
∑

𝑋𝑛−1∈𝒮
∑

𝑋𝑛−2∈𝒮
𝑓(𝑍0∶𝑛 ∣ 𝑋𝑛−2, 𝑋𝑛−1, 𝑋𝑛)

× Pr(𝑋𝑛 ∣ 𝑋𝑛−1) Pr(𝑋𝑛−1 ∣ 𝑋𝑛−2) Pr(𝑋𝑛−2)
= …

= ∑
𝑋0∈𝒮

… ∑
𝑋𝑛∈𝒮

{𝑓(𝑍0∶𝑛, ∣ 𝑋0∶𝑛) × Pr(𝑋0) ×
𝑛

∏
𝑚=1

Pr(𝑋𝑚 ∣ 𝑋𝑚−1)}

(Above, we are using a slight abuse of notation, so that the formula fits on a page. Take some
time to think about it, and make sure you understand what the probabilities and 𝑓 refer to.)

Now, remember that the observations are conditionally independent given the states, so

𝑓(𝑍0∶𝑛, ∣ 𝑋0∶𝑛) =
𝑛

∏
𝑚=0

𝑓(𝑍𝑚 ∣ 𝑋𝑚)

We now recognise that the likelihood can be written in terms of the state-dependent distribu-
tions, the initial distribution of the state process, and the transition probabilities. As before,
we use the notation

• 𝑏𝑘(𝑧) = 𝑓(𝑍𝑚 = 𝑧 ∣ 𝑋𝑚 = 𝑘),
• 𝑃𝑖𝑗 = Pr(𝑋𝑚+1 = 𝑗 ∣ 𝑋𝑚 = 𝑖),
• 𝑢(𝑚)

𝑖 = Pr(𝑋𝑚 = 𝑖).

Then, the joint density of the observations is

𝐿 = ∑
𝑥0∈𝒮

… ∑
𝑥𝑛∈𝒮

{𝑢(0)
𝑥0

𝑛
∏
𝑚=0

𝑏𝑥𝑚
(𝑧𝑚)

𝑛
∏
𝑚=1

𝑃𝑥𝑚−1,𝑥𝑚
}

This is a relatively simple expression, which would in principle be straightforward to implement
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with a computer (for maximum likelihood estimation, for example). However, it is extremely
computationally expensive, with |𝒮|𝑛+1 terms to sum, and often not a practical option. The
challenge is to sum over all unobserved state sequences, because there are so many possible com-
binations. In the next section, we present an alternative approach to evaluating the likelihood,
which uses matrix operations and offers an elegant solution to this problem.

5.3.2 Second attempt: forward algorithm

Definition 5.1

The forward probability 𝛼(𝑚)
𝑘 is defined as

𝛼(𝑚)
𝑘 = 𝑓(𝑍0 = 𝑧0, … , 𝑍𝑚 = 𝑧𝑚, 𝑋𝑚 = 𝑘),

for state 𝑘 ∈ 𝒮 and time 𝑚 ∈ {0, 1, 2, … }.

When the observation variables are continuous, 𝛼(𝑚)
𝑘 represents a probability density rather

than a probability, but the term “forward probability” tends to be used loosely in both cases.
In what follows, we denote as 𝛼(𝑚) = (𝛼(𝑚)

0 , 𝛼(𝑚)
1 , … ) the vector of forward probabilities.

There is a close link between the forward probabilities and the likelihood. Once again, we use
the law of total probability to notice that

𝐿 = ∑
𝑘∈𝒮

𝑓(𝑍0 = 𝑧0, … , 𝑍𝑛 = 𝑧𝑛, 𝑋𝑛 = 𝑘)

= ∑
𝑘∈𝒮

𝛼(𝑛)
𝑘

= 𝛼(𝑛)1⊺

Proposition 5.1

The likelihood of a hidden Markov model is given by

𝐿 = 𝑢(0)𝐵(𝑧0)𝑃𝐵(𝑧1) … 𝑃𝐵(𝑧𝑛)1⊺

Proof

Our aim is to derive an iterative procedure to compute the forward probabilities 𝛼(𝑛).
First, note that

𝑓(𝑍0∶𝑚, 𝑋0∶𝑚) = 𝑓(𝑋0)
𝑚

∏
𝑙=0

𝑓(𝑍𝑙 ∣ 𝑋𝑙)
𝑚

∏
𝑙=1

Pr(𝑋𝑙 ∣ 𝑋𝑙−1)
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and

𝑓(𝑍0∶𝑚+1, 𝑋0∶𝑚+1) = 𝑓(𝑋0)
𝑚+1
∏
𝑙=0

𝑓(𝑍𝑙 ∣ 𝑋𝑙)
𝑚+1
∏
𝑙=1

Pr(𝑋𝑙 ∣ 𝑋𝑙−1)

= 𝑓(𝑍0∶𝑚, 𝑋0∶𝑚)𝑓(𝑍𝑚+1 ∣ 𝑋𝑚+1) Pr(𝑋𝑚+1 ∣ 𝑍𝑚+1).
Summing over all possible values of 𝑋0, 𝑋1, … , 𝑋𝑚−1 (as we do in the law of total proba-
bility), this becomes

𝑓(𝑍0∶𝑚+1, 𝑋𝑚, 𝑋𝑚+1) = 𝑓(𝑍0∶𝑚, 𝑋𝑚) Pr(𝑋𝑚+1 ∣ 𝑋𝑚)𝑓(𝑍𝑚+1 ∣ 𝑋𝑚+1),

and, summing over all possible values of 𝑋𝑚, we get

𝑓(𝑍0∶𝑚+1, 𝑋𝑚+1) = ∑
𝑘∈𝒮

𝑓(𝑍0∶𝑚, 𝑋𝑚 = 𝑘) Pr(𝑋𝑚+1 ∣ 𝑋𝑚)𝑓(𝑍𝑚+1 ∣ 𝑋𝑚+1).

Recognising the forward probabilities, this can be written as the matrix product

𝛼(𝑚+1) = 𝛼(𝑚)𝑃𝐵(𝑧𝑚+1).

We now have a method to iteratively compute the forward probabilities; this procedure
is called the forward algorithm. This initially requires calculating 𝛼(0), which is simply
𝑢(0)𝐵(𝑧1).
Applying this iteration from 𝑚 = 0 to 𝑚 = 𝑛 − 1 yields

𝛼(𝑛) = 𝑢(0)𝐵(𝑧0)𝑃𝐵(𝑧1) … 𝑃𝐵(𝑧𝑛)

Finally, we get the required result,

𝐿 = 𝛼(𝑛)1⊺

= 𝑢(0)𝐵(𝑧0)𝑃𝐵(𝑧1) … 𝑃𝐵(𝑧𝑛)1⊺

Remarkably, the number of operations required to evaluate the matrix product is much smaller
than for the original nested sums. It is of the order of 𝑛|𝒮|2, and makes it possible to compute the
likelihood in many situations. This efficient algorithm has greatly contributed to the popularity
of hidden Markov models.

A similar algorithm (called the “Viterbi algorithm”, after its inventor) can be used to derive
the most likely state sequence, given the observations and a set of estimated parameters. In
many applications, this is the main object of inference.
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5.4 Some examples

5.4.1 Animal telemetry

In the last couple of decades, it has become increasingly possible to track wild animals using
telemetry devices. This could be a GPS collar on a polar bear, a depth sensor on a beaked
whale, or an accelerometer on an albatross. The resulting data contain an incredible amount
of information about the behaviour of those animals, which would be very difficult to obtain
otherwise.

Consider the acceleration data shown in Figure 5.6, which comes from an albatross tagged in
South Georgia (a small island in the South Atlantic) and was analysed by Conners et al. (2021).
The variable shown here is a derived metric of “heave acceleration”, i.e., acceleration along the
bird’s up-down axis, measured every 30 seconds. It is clear that the distribution of acceleration
is multimodal, and it looks from the time series plot that there is strong autocorrelation: high
acceleration is likely to be followed by high acceleration. The multimodality suggests that a
mixture model might be adequate, and the autocorrelation suggests that some dependence is
required, making hidden Markov models a natural choice.
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Figure 5.6: Albatross accelerometer data.

Now, say that we use a hidden Markov model with three states, i.e., 𝑋𝑚 ∈ 𝒮 = {0, 1, 2},
to identify three mixture components. Within each state, we choose to model the acceleration
with a normal distribution, i.e., 𝑏𝑘 is the Gaussian probability density function (with parameters
dependent on 𝑘). Maximum likelihood estimation based on the forward algorithm can be used
to estimate all transition probabilities of (𝑋𝑡), as well as the state-dependent parameters of the
normal distribution of acceleration.

Figure 5.7 shows the estimated state-dependent distribution 𝑏𝑘, and the most likely sequence of
unobserved states. In this model, the three states (𝑋𝑚 = 0, 1, 2) correspond to very low, low,
and high heave acceleration, respectively. A biologist could propose a tentative interpretation
in terms of albatross behaviour, and the model could then be used to distinguish phases where
the animal is resting on water and flying, for example.
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Figure 5.7: Results of albatross analysis.

Another output of the model is the estimated transition probability matrix of the state pro-
cess,

𝑃 =
⎛⎜⎜⎜
⎝

0.783 0.21 0.007
0.042 0.935 0.023

0 0.013 0.987

⎞⎟⎟⎟
⎠

The large diagonal transition probabilities reflect a strong tendency to persist in each state. We
can use the results from Chapter 2 to get insights into the behaviour of albatross. For example,
from 𝑃 , we can see that the expected holding times in the three states are

1
1 − 0.783 = 4.6, 1

1 − 0.935 = 15, and 1
1 − 0.987 = 77.

We can compute the stationary distribution of the Markov chain using any of the methods from
Chapter 2, which gives us an estimate of the long-run proportion of time that the bird spends
in each behavioural state. Here, we find

𝜋 = (0.06, 0.33, 0.61).

These results all suggest that the albatross spends most of its time in the state 𝑋 = 2.

5.4.2 Oil price

We now turn to the problem of understanding the dynamics of oil prices through time. Fig-
ure 5.8 shows the daily changes in oil prices in the USA between 1986 and 2023, obtained from
the US Energy Information Administration. The histogram does not display multimodality this
time, but the distribution looks heavy-tailed and would not be modelled well with something
like a normal distribution. This is another reason to use a mixture model. The time series
plot shows an interesting pattern of alternance between long periods of high and low variabil-
ity. We might interpret high variability as a sign of financial instability and, indeed, there are
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large price changes after the 2008 financial crisis, as well as during the first few months of the
Covid-19 pandemic.

0.0

0.2

0.4

0.6

0.8

−5.0 −2.5 0.0 2.5
daily price difference

de
ns

ity

Distribution of price changes

−50

−25

0

25

50

1990 2000 2010 2020
time

da
ily

 p
ric

e 
di

ffe
re

nc
e

Time series of price changes

Figure 5.8: Oil price data.

Just like in the previous example, we analyse the data with a hidden Markov model with three
states and normal state-dependent distributions. Using maximum likelihood estimation, we
get estimates of the transition probabilities and of the parameters of the normal distribution
in each state.

Figure 5.9 shows the estimated state-dependent distributions, and the most likely state sequence
for the fitted hidden Markov model. In contrast with the albatross example, what distinguishes
the three states this time is not the mean of the distributions, but their variances. They roughly
represent low (𝑋𝑚 = 0), intermediate (𝑋𝑚 = 1), and high (𝑋𝑚 = 2) variances, corresponding
to different levels of financial instability.
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Figure 5.9: Results of oil price analysis.

The estimated transition probability matrix is

𝑃 =
⎛⎜⎜⎜
⎝

0.989 0.011 0
0.007 0.98 0.012

0 0.1 0.9

⎞⎟⎟⎟
⎠
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indicating that there is strong autocorrelation in the state process. The expected holding times
(measured in days) are

1
1 − 0.989 = 91, 1

1 − 0.98 = 50, and 1
1 − 0.9 = 10,

and the stationary distribution is

𝜋 = (0.38, 0.56, 0.07).
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